Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
\(a,\sin B=\dfrac{AC}{BC}=\dfrac{12}{13};\cos B=\dfrac{AB}{BC}=\dfrac{5}{13};\tan B=\dfrac{AC}{AB}=\dfrac{12}{5};\cot B=\dfrac{AB}{AC}=\dfrac{5}{12}\\ b,\text{Áp dụng HTL: }\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ \sin B=\dfrac{12}{13}\approx67^0\\ \Rightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{HAB}=90^0-\widehat{B}\approx23^0\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
\(a,AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\left(pytago\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{144}{13}\left(cm\right)\\AH=\sqrt{\dfrac{25}{13}\cdot\dfrac{144}{13}}=\dfrac{60}{13}\left(cm\right)\end{matrix}\right.\)
\(b,\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13}\approx\sin67^0\Leftrightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}=23^0\)
\(c,\) Vì AM là trung tuyến ứng ch BC nên \(AM=BM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\)
Ta có \(MH=MB-HB=6,5-\dfrac{25}{13}=\dfrac{119}{26}\left(cm\right)\)
Vậy \(S_{AMH}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
A B C K N 5 12
Mik gọi như này nhé, từ trung điểm M của BC, kẻ vuông góc với BC cắt AC tại N và AB tại K.
Bài làm
a) Xét tam giác ABC vuông tại A có:
\(BC=\sqrt{AB^2+AC^2}\)
hay \(BC=\sqrt{5^2+12^2}=\sqrt{25+144}\)
=> \(BC=\sqrt{169}=13\left(cm\right)\)
=> \(BM=MC=\frac{BC}{2}=\frac{13}{2}=6,5\left(cm\right)\)
Xét tam giác ABC và tam giác MNC có:
\(\widehat{BAC}=\widehat{NMC}=90^0\)
\(\widehat{C}\)chung
=> Tam giác ABC ~ tam giác MNC ( g-g )
=> \(\frac{AB}{MN}=\frac{AC}{MC}\)
hay \(\frac{5}{MN}=\frac{12}{6,5}\Rightarrow MN=\frac{65}{24}\left(cm\right)\)
b) Xét tam giác ABC vuông tại A
Đường cao AH
=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
hay \(\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{12^2}\)
=> \(\frac{1}{AH^2}=\frac{1}{25}+\frac{1}{144}\)
=> \(\frac{1}{AH^2}=\frac{169}{3600}\)
=> \(AH^2=\frac{3600}{169}\)
=> \(AH=\sqrt{\frac{3600}{169}}=\frac{60}{13}\)( cm )
Xét tam giác AHB vuông tại H có:
Theo Pytago có:
\(BH^2=AB^2-AH^2\)
hay \(BH^2=5^2-\frac{3600}{169}\)
=> \(BH^2=25-\frac{3600}{169}\)
=>\(BH^2=\frac{625}{169}\)
=> \(BH=\frac{25}{13}\)( cm )
Ta có: BH + HC = BC
hay \(\frac{25}{13}+HC=13\)
=> \(HC=13-\frac{25}{13}\)
=> \(HC=\frac{144}{13}\)
Trả lời:
a, ta có AB^2+AC^2=5^2+12^2=25+144=169
BC^2=13^2=169
=>AB^2+AC^2=BC^2
=>tam giác ABC vuông tại A( định lí pytago đảo)
b, ta có AH ⊥BC
=> tam giác AHB và tam giác AHC vuông tại H
+tam giác AHC có HF là đường cao
=> AH^2=AF.AC(1)
+tam giác AHB có HE là đường cao
=> AH^2=AE.AB(2)
từ(1) và (2)=> AF.AC=AE.AB(=AH^2)
c, ta có AH là đường cao của tam giác ABC
=>AH ⊥BC(*)
+{ HE ⊥AB=> góc HEA=90*
+{HF ⊥AC=>góc HFA=90*
+{AB ⊥AC=> góc BAC=90*
=> tứ giác AEHF là hình chữ nhật
lại có AH và EF là đường chéo
=> AH ⊥EF(**)
từ (*)(**) => EF//BC
=> góc AEF=góc ABC(đồng vị)
ΔABC ∞ ΔAEF(g.g) vì
góc A chung
góc ABC=góc AEF(cmt)
=>đpcm
Đúng thì k sai thì cho mik xin lỗi
HT
a, ta có AB^2+AC^2=5^2+12^2=25+144=169
BC^2=13^2=169
=>AB^2+AC^2=BC^2
=>tam giác ABC vuông tại A( định lí pytago đảo)
b, ta có AH ⊥BC
=> tam giác AHB và tam giác AHC vuông tại H
+tam giác AHC có HF là đường cao
=> AH^2=AF.AC(1)
+tam giác AHB có HE là đường cao
=> AH^2=AE.AB(2)
từ(1) và (2)=> AF.AC=AE.AB(=AH^2)
c, ta có AH là đường cao của tam giác ABC
=>AH ⊥BC(*)
+{ HE ⊥AB=> góc HEA=90*
+{HF ⊥AC=>góc HFA=90*
+{AB ⊥AC=> góc BAC=90*
=> tứ giác AEHF là hình chữ nhật
lại có AH và EF là đường chéo
=> AH ⊥EF(**)
từ (*)(**) => EF//BC
=> góc AEF=góc ABC(đồng vị)
ΔABC ∞ ΔAEF(g.g) vì
góc A chung
góc ABC=góc AEF(cmt)
=>đpcm
a) Áp dụng tslg trong tam giác AHB vuông tại H:
\(sinB=\dfrac{AH}{AB}=\dfrac{5}{13}\Rightarrow\widehat{B}\approx23^0\)
\(\Rightarrow\widehat{C}\approx90^0-23^0\approx67^0\)
b) Áp dụng tslg trong tam giác ABC vuông tại A:
\(\Rightarrow AC=AB.tanB=13.tan23^0\approx6\left(cm\right)\)