K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

???ng tr�n c: ???ng tr�n qua B_1 v?i t�m O ?o?n th?ng g: ?o?n th?ng [A_1, B_1] ?o?n th?ng k: ?o?n th?ng [C_1, O] ?o?n th?ng l: ?o?n th?ng [D_1, O] ?o?n th?ng m: ?o?n th?ng [A_1, M_1] ?o?n th?ng n: ?o?n th?ng [B_1, M_1] ?o?n th?ng p: ?o?n th?ng [C_1, A_1] ?o?n th?ng r: ?o?n th?ng [D_1, B_1] ?o?n th?ng a: ?o?n th?ng [A, B] ?o?n th?ng b: ?o?n th?ng [B, C] ?o?n th?ng e: ?o?n th?ng [C, A] ?o?n th?ng h_1: ?o?n th?ng [M, D] ?o?n th?ng i_1: ?o?n th?ng [E, M] O = (0.44, 3.36) O = (0.44, 3.36) O = (0.44, 3.36) B_1 = (2.94, 3.36) B_1 = (2.94, 3.36) B_1 = (2.94, 3.36) B_1 = (2.94, 3.36) ?i?m A_1: Giao ?i?m c?a c, f ?i?m A_1: Giao ?i?m c?a c, f ?i?m A_1: Giao ?i?m c?a c, f ?i?m A_1: Giao ?i?m c?a c, f A = (-14.74, 1.5) A = (-14.74, 1.5) A = (-14.74, 1.5) B = (-16.02, -2.1) B = (-16.02, -2.1) B = (-16.02, -2.1) C = (-9.7, -2.18) C = (-9.7, -2.18) C = (-9.7, -2.18) ?i?m M: ?i?m tr�n b ?i?m M: ?i?m tr�n b ?i?m M: ?i?m tr�n b ?i?m E: Giao ?i?m c?a g_1, a ?i?m E: Giao ?i?m c?a g_1, a ?i?m E: Giao ?i?m c?a g_1, a ?i?m D: Giao ?i?m c?a f_1, e ?i?m D: Giao ?i?m c?a f_1, e ?i?m D: Giao ?i?m c?a f_1, e TenVanBan1 = "S_1" TenVanBan1 = "S_1" TenVanBan2 = "S_2" TenVanBan2 = "S_2"

Giả sử BM = x; MC = 1. Khi đó ta có \(\Delta BEM\sim\Delta MDC\) theo tỉ lệ x. Vậy \(x^2=\frac{S_1}{S_2}=\frac{103}{145}\Rightarrow x=\sqrt{\frac{103}{145}}\)

Lại có \(\Delta BEM\sim\Delta BAC\) theo tỉ lệ \(\frac{x}{x+1}\) nên \(\frac{S_1}{S_{ABC}}=\left(\frac{x}{x+1}\right)^2\Rightarrow S_{ABC}=\frac{103}{\left(\frac{x}{x+1}\right)^2}\approx492,42\left(cm^2\right).\)

11 tháng 10 2018

A B C M D E F I K L G N

Gọi G là đỉnh thứ tư của hình bình hành KMIG. Giao điểm của MG và IK là N.

Do tứ giác KMIG là hình bình hành nên MI = KG và ^MKG + ^KMI = 1800 hay ^MKG + ^EMD = 1800

Ta có: \(\frac{MI}{BC}=\frac{MK}{AC}\). Do MI = KG nên \(\frac{KG}{BC}=\frac{MK}{AC}\)

Xét tứ giác CDME có: ^CDM = ^CEM = 900 => ^ECD + ^EMD = 1800. Mà ^MKG + ^EMD = 1800 (cmt)

Nên ^ECD = ^MKG hay ^ACB = ^MKG 

Xét \(\Delta\)ABC và \(\Delta\)MGK có: \(\frac{GK}{BC}=\frac{MK}{AC}\); ^ACB = ^MKG => \(\Delta\)ABC ~ \(\Delta\)MGK (c.g.c)

=> ^BAC = ^GMK và \(\frac{MG}{AB}=\frac{MK}{AC}\)

Lại có: \(\frac{MK}{AC}=\frac{ML}{AB};\frac{MG}{AB}=\frac{MK}{AC}\)(cmt) => \(\frac{ML}{AB}=\frac{MG}{AB}\)=> ML = MG

Ta thấy: Tứ giác AFME có ^AFM = ^AEM = 900 => ^FAE + ^FME = 1800 . Mà ^FAE = ^BAC = ^GMK (cmt)

Nên ^GMK + ^FME = 1800 => G;M;F thẳng hàng. Hay G;M;I thẳng hàng

Mặt khác: N là trung điểm KI và MG (T/c hbh) => Điểm M nằm trên trung tuyến LN của \(\Delta\)IKL (1)

MG = ML; MN = 1/2.MG (cmt) => MN=1/2.ML (2)

Từ (1) và (2) => M là trọng tâm của \(\Delta\)IKL (đpcm).