K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

nghi he lau qua len gan quen roi, ai jup toi voi

20 tháng 11 2014

gọi I là trung điểm AD

xét tam giác ACD có EI là đường trung bình nên IE song song CD và bằng 1/2 CD

xét trường hợp 1 EF cắt OA tại K ko thuộc tia Ox và cắt Oy tại Q thuộc Oy

có EI song song CD nên IEF=FQD

tương tự ta có IN là đường trung bình tam giác ABD nên IF song song AB và bằng 1/2 AB 

AB=CD nên IE=IF 

tam giác IEF cân tại I

ta có IF song song AB nên IF song song OK

INK= KNI

IMN = NQD = OQK 

nên tam giác OKQ cân tại O có Ot là phân giác góc ngoài tại O nên Ot song song KQ hay song song MN

trường hợp còn lại làm tương tị

chỗ Ot là phân giác ngoài ban tự chứng minh song song đi dễ mà 

a: AC=12cm

Xét ΔABC có AB<AC<BC

nên góc C<góc B<góc A

b: Xét ΔBCD có

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

c: Xét ΔCBD có

CA,BE là đường trung tuyến

CA cắt BE tại I

Do đó: DI đi qua trung điểm của BC

18 tháng 1 2018

Sửa :P và Q là trung điểm BH và HC nhé

27 tháng 10 2019

a) Ta có D đối xứng vs a qua O (gt)

=> O là trung điểm của AD

Xét tứ giác ABCD có

BC cắt AD tại O

Mặt khác ta có O là trung điểm của BC

O là trung điểm của AD

nên tứ giác ABCD là hình bình hành

Xét hình bình hành ABCD có góc A = 900

=> Hình bình hànhABCD là hình chữ nhật

b, Xét tam giác AED có

AH = HE

AO = DO

=> HO là đường trung bình của tam giác

=> HO // ED

=> góc H bằng goc E vì đồng vị

Mà AH vuông góc vs BC

=> góc H = 90o

=> E bằng 90o

=> AE vuông góc vs ED

Xét tam giác AED c0s E bằng 90 độ nên tam giác ADE vuông

c,Đợi tí mình giải tiếp nhé

27 tháng 10 2019

a) Ta có: A và D đối xứng với nhau qua O(gt)

⇒O là trung điểm của AD

Xét tứ giác ABDC có:

O là trung điểm của đường chéo BC(gt)

O là trung điểm của đường chéo AD(cmt)

\(BC\cap AD=\left\{O\right\}\)

Do đó: ABDC là hình bình hành(dấu hiệu nhận biết hình bình hành)

\(\widehat{CAB}=90\)độ(ΔCAB cân tại A)

nên ABDC là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

b)* chứng minh ΔAED vuông

Kẻ EO

Xét ΔOHA (\(\widehat{OHA}=90\) độ) và ΔOHE (\(\widehat{OHE}=90\) độ) có

OH là cạnh chung

HA=HE(gt)

Do đó: ΔOHA=ΔOHE(hai cạnh góc vuông)

⇒OA=OE(hai cạnh tương ứng)

\(OA=\frac{AD}{2}\)(do O là trung điểm của AD)

nên \(OE=\frac{AD}{2}\)

Xét ΔAED có:

OE là đường trung tuyến ứng với cạnh AD (do O là trung điểm của AD)

\(OE=\frac{AD}{2}\)(cmt)

nên ΔAED vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)

* chứng minh CE⊥BE

Ta có: AO là đường trung tuyến ứng với cạnh huyền BC của ΔCAB vuông tại A(do O là trung điểm của BC)

\(AO=\frac{BC}{2}\)(định lí 1 về từ hình chữ nhật áp dụng vào tam giác vuông)

mà AO=OE(cmt)

nên \(EO=\frac{BC}{2}\)

Xét ΔCEB có:

EO là đường trung tuyến ứng với cạnh BC(do O là trung điểm của BC)

\(EO=\frac{BC}{2}\)(cmt)

nên ΔCEB vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)

hay \(\widehat{CEB}=90\) độ

⇒CE⊥BE(đpcm)

11 tháng 3 2018

mk mới học lớp 7 à