K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AEB=góc AHB=90 độ

=>ABHE nội tiếp

b: góc HED=góc ABC=1/2*sđ cung AC=góc ADC

=>HE//CD

31 tháng 12 2023

a: Xét tứ giác AHKC có \(\widehat{AHC}=\widehat{AKC}=90^0\)

nên AHKC là tứ giác nội tiếp

=>A,H,K,C cùng thuộc một đường tròn

10 tháng 2 2020

O A B E D C H

Vì góc AED chắn nửa đường tròn tâm O ( AD )

=> \(\widehat{AED}=90^0\)

=> AE \(\perp\)AD hay AH \(\perp\)ED

Mà AH \(\perp\)BC 

=> ED // BC 

Vì góc ACD chắn nửa đường tròn => \(\widehat{ACD}=90^0\)

Ta có : \(\widehat{BEA}=\widehat{BCA}\)

Mặt khác : \(\widehat{BEA}+\widehat{EBC}=90^0;\widehat{BCA}+\widehat{BCD}=90^0\)

=> \(\widehat{EBC}=\widehat{BCD}\)

Xét hình thang BCDE ( ED // BC ) có :

\(\widehat{EBC}=\widehat{BCD}\)(hai góc cùng kề cạnh BC )

=> BCDE là hình thang cân

30 tháng 11 2023

a: Xét (O) có

\(\widehat{BAM}\) là góc nội tiếp chắn cung BM

\(\widehat{CAM}\) là góc nội tiếp chắn cung CM

\(\widehat{BAM}=\widehat{CAM}\)(AM là phân giác của góc BAC)
Do đó: \(sđ\stackrel\frown{BM}=sđ\stackrel\frown{CM}\)

=>MB=MC

=>M nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC

b: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét (O) có

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ADC}=\widehat{ABC}\)

Xét ΔACD vuông tại C và ΔAHB vuông tại H có

\(\widehat{ADC}=\widehat{ABH}\)

Do đó: ΔACD đồng dạng với ΔAHB

=>\(\widehat{CAD}=\widehat{HAB}\)

\(\widehat{BAH}+\widehat{HAM}=\widehat{BAM}\)

\(\widehat{CAD}+\widehat{MAD}=\widehat{CAD}\)

mà \(\widehat{BAH}=\widehat{CAD}\) và \(\widehat{BAM}=\widehat{CAD}\)

nên \(\widehat{HAM}=\widehat{MAD}\)

=>\(\widehat{IAM}=\widehat{DAM}\)

=>AM là phân giác của góc IAD

c: Xét (O) có

\(\widehat{IAM}\) là góc nội tiếp chắn cung IM

\(\widehat{DAM}\) là góc nội tiếp chắn cung DM

\(\widehat{IAM}=\widehat{DAM}\)

Do đó: \(sđ\stackrel\frown{IM}=sđ\stackrel\frown{DM}\)

=>IM=DM

=>M nằm trên đường trung trực của DI(3)

OI=OD

=>O nằm trên đường trung trực của DI(4)

Từ (3) và (4) suy ra OM là đường trung trực của DI

=>OM\(\perp\)DI

mà OM\(\perp\)BC

nên DI//BC

a: Xét (O) có

 

ΔAMD nội tiếp

AD là đường kính

Do đó: ΔAMD vuông tại M

=>AM\(\perp\)MD

b: 

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét ΔAHB vuông tại H và ΔACD vuông tại C có

\(\widehat{ABH}=\widehat{ADC}\)

Do đó: ΔAHB~ΔACD

c: Ta có: AM\(\perp\)MD

AM\(\perp\)BC tại H

Do đó: BC//MD

=>BCDM là hình thang

=>\(\widehat{BMD}+\widehat{MBC}=180^0\)

mà \(\widehat{MBC}+\widehat{MDC}=180^0\)(BCDM là tứ giác nội tiếp (O))

nên \(\widehat{BMD}=\widehat{CDM}\)

Hình thang BCDM(BC//MD) có \(\widehat{BMD}=\widehat{CDM}\)

nên BCDM là hình thang cân