K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(BH=\sqrt{AB^2-AH^2}=5\left(cm\right)\)

BC=BH+CH=5+5=10(cm)

\(AC=\sqrt{12^2+5^2}=13\left(cm\right)\)

b: C=AB+BC+AC=10+13+13=36(cm)

4 tháng 3 2022

bạn ghi giả thiết và kết luận dùng mik được ko

 

Giúp mình với !!! vẽ hình giúp mình với nha !! Bài 1: Cho tam giác ABC vuông tại A. Biết BC = 41cm; AC = 40cm. Tínha) Độ dài cạnh ABb) Chu vi tam giác ABCBài 2: Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC. Biết AC = 20cm; AH =12cm; HB = 5cma) Tính độ dài cạnh ABb) Tính chu vi tam giác ABCBài 3: Cho tam giác ABC có BC = 10cm , AB = 6cm và AC = 8cm . Tam giác ABC làtam giác gì ? Vì sao ?Bài 4: Cho tam giác ABC vuông tại A, có B 60  0 và AB = 5cm. Tia phân giác...
Đọc tiếp

Giúp mình với !!! vẽ hình giúp mình với nha !! yeu

Bài 1: Cho tam giác ABC vuông tại A. Biết BC = 41cm; AC = 40cm. Tính
a) Độ dài cạnh AB
b) Chu vi tam giác ABC
Bài 2: Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC. Biết AC = 20cm; AH =
12cm; HB = 5cm
a) Tính độ dài cạnh AB
b) Tính chu vi tam giác ABC
Bài 3: Cho tam giác ABC có BC = 10cm , AB = 6cm và AC = 8cm . Tam giác ABC là
tam giác gì ? Vì sao ?
Bài 4: Cho tam giác ABC vuông tại A, có B 60  0 và AB = 5cm. Tia phân giác của góc
B cắt AC tại D. Kẻ DE vuông góc với BC (EBC) . Chứng minh:
a) ABD = EBD.
b) ABE là tam giác đều.
c) AEC cân.
d) Tính độ dài cạnh AC.
Bài 5: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( HBC )
a) Chứng minh: AHB =  AHC
b) Giả sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH
c) Trên tia đối của tia HA lấy điểm M sao cho HM = HA. Chứng minh  ABM
cân
d) Chứng minh BM // AC
Bài 6: Cho tam giác ABC vuông tại A, phân giác BE. Kẻ EK vuông góc với BC tại K.
Gọi M là giao điểm của BA và KE. Chứng minh :
a) ΔABE = ΔKBE
b) EM = EC
c) AK // MC
d) So sánh AE và EC
e) Gọi N là trung điểm của MC. Chứng minh 3 điểm B, E, N thẳng hàng
Bài 7: Cho ABC có AB = AC =10cm, BC = 12cm. Vẽ AH vuông góc BC tại H.
a) Chứng minh:  ABC cân.
b) Chứng minh    AHB AHC, từ đó chứng minh AH là tia phân giác của góc
A.
c) Từ H vẽ HM  AB ( ) M AB  và kẻ HN  AC ( ) N AC  . C/m:  BHM =  HCN
d) Tính độ dài AH.
e) Từ B kẻ Bx  AB, từ C kẻ Cy  AC chúng cắt nhau tại O. Tam giác OBC là
tam giác gì? Vì sao?

1
11 tháng 3 2022

bạn đăng tách ra nhé

 Bài 1 : 

Theo định lí Pytago tam giác ABC vuông tại A

\(AB=\sqrt{BC^2-AC^2}=9cm\)

Chu vi tam giác ABC là 41 + 40 + 9 = 90  cm 

1 tháng 3 2019

AB = 13 cm, BC = 21 cm.

Từ đó, chu vi của tam giác ABC là 54 cm.

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=12^2+16^2=400\)

hay AB=20(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=AC^2-AH^2=20^2-12^2=256\)

hay HC=16(cm)

Ta có: BH+HC=BC(H nằm giữa B và C)

nên BC=16+16=32(cm)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+BC+AC=20+32+20=72\left(cm\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:

Áp dụng định lý Pitago cho tam giác $AHC$ vuông tại $H$:

$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

Áp dụng định lý Pitago cho tam giác $AHB$ vuông tại $H$:

$AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20$ (cm)

Chu vi tam giác $ABC$:

$AB+BC+AC=AB+BH+CH+AC=20+16+16+20=72$ (cm)

19 tháng 5 2017

A B H C

Xét \(\Delta\)AHC vuông tại H:

=> AC2 = HA2 + HC2

HC2 = AC2 - HA2

HC2 = 202 - 122 = 256

HC = \(\sqrt{256}\) = 16 (cm)

BC = BH + HC

BC = 5 + 16 = 21 (cm)

Xét \(\Delta\)AHB vuông tại H

=> AB2 = HA2 + HB2

AB2 = 122 + 52

AB2 = 144 + 25 = 169

AB = \(\sqrt{169}\) = 13 (cm)

Chu vi của \(\Delta\)ABC là:

AC + CB + BA = 20 + 21 + 13

= 54 (cm)

Vậy chu vi của \(\Delta\)ABC là 54 cm.

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = 122 + HC2

=> HC2 = 202 - 122

HC2 = 400 - 144 = 256 = 162

=> HC = 16 cm

Ta có : BC = HC + HB = 16 + 5 = 21 cm

Tam giác ABH vuông tại H nên :

AB2 = AH2 + HB2

AB2 = 122 + 52

AB2 = 144 + 25 = 169 = 132

=> AB = 13 cm

Vậy chu vi tam giác ABC là :

AB + AC + BC = 13 + 20 + 21 = 54 (cm)

16 tháng 4 2020

chu vi là 54 cm

10 tháng 1 2019

(tự vẽ hinh)

* Do AH vuông góc vs BC(gt)

=> Tam giác AHC và tam giác AHC là tam giác vuông tại H

* Tam giác vuông AHC có:

AC^2=AH^2+HC^2(ĐL py-ta-go)

20^2=12^2+HC^2

400=144+HC^2

HC^2=400-144

HC^2=256

HC^2=16^2(vì HC>0)

=>HC=16 cm

* Tam giác AHB có:

AB^2=AH^2+HB^2(DL py-ta-go)

AB^2=12^2+5^2

AB^2=144+25

AB^2=169

AB^2=13^2(vì AB>0)

=>AB=13 cm

*Ta có:

BH+HC=BC(AH vuống góc với BC tại H)

5+16=BC

=>BC=21cm

*Chu vi tam giác ABC:

AB+BC+AC=13+21+20=53cm

* Tam giác AHB và tam giác AHC là tam giác vuông trong vì:

AH vuông góc với BC tại H

AH cát BC tại hH tạo thành 2 tam giác vuông trong tam giác ABC