K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AC\cdot\sin C=AC\cdot\dfrac{AH}{AC}=AH\)

\(AB\cdot\sin B=AB\cdot\dfrac{AH}{AB}=AH\)

DO đó: \(AC\cdot\sin C=AB\cdot\sin B\)

b: \(AB\cdot\cos B=AB\cdot\dfrac{BH}{AB}=BH\)

c: \(AB\cdot\cos B+AC\cdot\cos C\)

\(=AB\cdot\dfrac{BH}{AB}+AC\cdot\dfrac{CH}{AC}=BH+CH=BC\)

10 tháng 9 2018

a)\(12^2+16^2=20^2\)(144+256=400)

\(\Rightarrow AB^2+AC^2=BC^2\)(định lý pytago)

\(\Rightarrow\Delta ABC\)vuông tại A

b)Xét tg ABC vuông tại A có đcao AH(cmt)

Ta có:AB.AC=BC.AH(Hệ thức lượng)

          12.16=20.AH

          192=20.AH

           AH=192:20=9.6

c)cosB=AB/BC,cosC=AC/BC

\(\Rightarrow\frac{AB.AB}{BC}+\frac{AC.AC}{BC}\)

\(\Rightarrow\frac{AB^2}{BC}+\frac{AC^2}{BC}=\frac{\left(AB^2+AC^2\right)}{BC}\)

\(\Rightarrow\frac{BC^2}{BC}=\frac{20^2}{20}=20\)

\(\Rightarrow AB.cosB+AC.cosC=20\)

10 tháng 10 2019

Bạn có ghi đề nhầm ko ạ

11 tháng 10 2019

hình như b) có hơn nhầm j đó

15 tháng 8 2017

a) Ta có \(AB^2+AC^2=400cm\); BC2=400cm=> \(\Delta ABC\) vuông tại A

Kẻ AH\(\perp\)BC

AH.BC=AB.AC=> AH.20=12.16=>AH=9,6cm

b) Ta có \(\cos b=\dfrac{HB}{AB}=\dfrac{HB}{12}=>\cos b.AB=HB\)(1) ; \(\cos c=\dfrac{HC}{AC}=\dfrac{HC}{16}=>\cos C.AC=HC\)(2)

Lấy (1)+(2) => \(\cos b.AB+\cos C.AC=HB+HC\)(3)

Mặt khác ta có HB+HC=BC=20cm(4)

Từ 3 ,4 => \(\cos b.AB+c\text{os}c.AC=20\)

a: góc HEB=1/2*180=90 độ

=>HE vuông góc AB

góc CFH=1/2*180=90 độ

=>HF vuông góc AC

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hcn

b: góc AEF=góc AHF=góc C

=>góc FEB+góc C=180 độ

=>FEBC nội tiếp

c: gọi I,K lần lượt là trung điểm của BH,CH

góc IEF=góc IEH+góc FEH

=góc IHE+góc FAH

=góc HAC+góc HCA=90 độ

=>FE là tiếp tuyến của (I)

góc KFE=góc KFH+góc EFH

=góc KHF+góc EAH

=góc HAB+góc HBA=90 độ

=>EF là tiếp tuyến của (K)

19 tháng 5 2022

huhu mmn oi

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)