Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có xet tam giác CDB có
CM= MB ( m t điểm cb )
NM //BD
=> CN= CD
Lại có CM=MB và CN =CD => NM là đường tb tg CDB
=> NM=1/2 BD (2)
Xét tg ADB
AE=EB
FE//BD
=> AF=FD
Lại có AF=FD và AE=EB => FE là đường tb tg ADB
=> EF= 1/2 BD (1)
Từ 1,2 => Ef = MN
a: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{BC}{2}\)
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
b: Xét tứ giác DECF có
DE//CF
DF//CE
Do đó: DECF là hình bình hành
=>DC cắt EF tại trung điểm của mỗi đường
mà G là trung điểm của DC
nên G là trung điểm của EF
=>E,G,F thẳng hàng
c: Xét ΔABC có
D là trung điểm của BA
DF//AC
Do đó: F là trung điểm của BC
Xét ΔDBC có
DF,BG là các đường trung tuyến
DF cắt BG tại H
Do đó: H là trọng tâm của ΔDBC