K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

Cho tam giác ABC vuông tại A.Gọi M là trung điểm của AC.Trên tia đối của tia MB lấy điêmr D sao cho MD=MB

a/ Chứng minh tam giác AMD bằng tam giác CMB

b/Chứng minh  AD=BC và AD//BC

c/Chứng minh AC vuông góc với CD

d/Đường thẳng đi qua B song song với AC cắt CD tại N . Chứng minh tam giác ABM bằng tam giác CNM

   CẢ NHÀ GIÚP EM VỚI, MAI EM NỘP RỒI Ạ

16 tháng 12 2017

a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

b) Ta có  \(\Delta ABM\)\(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)

=> AB // CD (đpcm)

28 tháng 11 2021
S/fffffffffdsbdhdjndbdbdbfbfbdbbdbdbfndndndbfnfnfnfnfnfn
24 tháng 11 2022

a: Xét ΔABM và ΔCDM có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔABM=ΔCDM

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AB//CD

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

DO đó:ΔABM=ΔCDM

b: Xét tứ giác ABCD có

M là trung điểm của AC

M làtrung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB//CD

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0
11 tháng 1 2017

Câu 1:

d A B C D E

Vì BD \(\perp\) d nên \(\widehat{BDA}\) = 90o

Ta có:

\(\widehat{BAD}\) + \(\widehat{BAC}\) + \(\widehat{CAE}\) = 180o

=> \(\widehat{BAD}\) + 90o + \(\widehat{CAE}\) = 180o

=> \(\widehat{BAD}\) + \(\widehat{CAE}\) = 90o (1)

Áp dụng tính chất tam giác vuông ta có:

\(\widehat{DBA}\) + \(\widehat{BAD}\) = 90o (2)

Từ (1) và (2) suy ra:

\(\widehat{BAD}\) + \(\widehat{CAE}\) = \(\widehat{DBA}\) + \(\widehat{BAD}\)

=> \(\widehat{CAE}\) = \(\widehat{DBA}\)

Xét \(\Delta\)DBA vuông tại D và \(\Delta\)EAC vuông tại E có:

BA = AC (giả thiết)

\(\widehat{DBA}\) = \(\widehat{EAC}\) (chứng minh trên)

=> \(\Delta\)DBA = \(\Delta\)EAC (cạnh huyền - góc nhọn)

=> DB = EA và DA = EC (2 cặp cạnh tương ứng).

Câu 2: Mk sẽ làm ở đây: /hoidap/question/166568.html

11 tháng 1 2017

A E D M B N C

a) Xét \(\Delta\)ABM và \(\Delta\)CDM có:

AM = CM (suy từ giả thiết)

\(\widehat{AMB}\) = \(\widehat{CMD}\) (đối đỉnh)

BM = DM (giả thiết)

=> \(\Delta\)ABM = \(\Delta\)CDM (c.g.c)

b) Xét \(\Delta\)AMD và \(\Delta\)CMB có:

AM = CM (suy từ gt)

\(\widehat{AMD}\) = \(\widehat{CMB}\) (đối đỉnh)

MD = MB (gt)

=> \(\Delta\)AMD = \(\Delta\)CMB (c.g.c)

=> \(\widehat{ADM}\) = \(\widehat{CBM}\) (2 góc tương ứng)

mà 2 góc ở vị trí so le trong nên AD // BC.

c) Vì \(\Delta\)AMD = \(\Delta\)CMB (câu b)

nên \(\widehat{ADM}\) = \(\widehat{CBM}\) (2 góc tương ứng)

hay \(\widehat{EDM}\) = \(\widehat{NBM}\)

Xét \(\Delta\)EDM và \(\Delta\)NBM có:

\(\widehat{EDM}\) = \(\widehat{NBM}\) (chứng minh trên)

DM = BM (gt)

\(\widehat{EMD}\) = \(\widehat{NMB}\) (đối đỉnh)

=> \(\Delta\)EDM = \(\Delta\)NBM (g.c.g)

=> EM = NM (2 cạnh tương ứng)

Do đó M là trung điểm của NE.

11 tháng 1 2017

Câu mk làm là câu 2, còn câu 1 làm ở phần kia nha

9 tháng 12 2018

a) CM Tam giac ABM = tam giac CDM

Xét tam giac ABM và Tam giác CDM, ta có:

MA = MC (gt)

MB=MD (gt)

Góc AMB = góc DMC (đđ)

Suy ra Tam giác ABM = Tam giác CDM

b) CM AB song song CD

Ta có: Góc MBA =góc MCD ( cmt)

Mà 2 góc này ở vị trí so le trong, nên suy ra AB//CD

c) CM E là trung điểm AC

Ta có: Tứ giác ABCD có:

M là trung điểm AC gt)

M là trung điểm BD (gt)

Mà AC cắt BD tại M

Suy ra: Tứ giac ABCD là hình bình hành

Ta lại có: MN là trung điểm BC , MN //AB//CD.

Do đó NE cũng //AB//CD , và E cũng là trung điểm của AD.