K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BCB'C' có 

\(\widehat{BC'C}=\widehat{BB'C}=90^0\)

Do đó: BCB'C' là tứ giác nội tiếp

 

24 tháng 2 2022

Ta có:

BB' là đường cao (gt). \(\Rightarrow BB'\perp AC.\)

CC' là đường cao (gt). \(\Rightarrow CC'\perp AB.\)

Xét tứ giác BCB'C':

\(\widehat{BC'C}=\widehat{BB'C}\left(CC'\perp AB;BB'\perp AC\right).\)Mà 2 đỉnh này ở vị trí kề nhau, cùng nhìn cạnh BC.\(\Rightarrow\) Tứ giác BCB'C' nội tiếp (dhnb).
31 tháng 5 2021

a) Dễ thấy A, H, K thẳng hàng.

Ta có \(\widehat{KCB}=\widehat{HCB}=90^o-\widehat{ABC}=\widehat{KAB}\).

Suy ra tứ giác ACKB nội tiếp.

b) \(\widehat{ABD}=\widehat{AA'C};\widehat{ADB}=\widehat{ACA'}=90^o\Rightarrow\Delta ABD\sim\Delta AA'C\left(g.g\right)\Rightarrow\widehat{BAD}=\widehat{A'AC}\)

\(\Rightarrow\widehat{AA'C}=90^o-\widehat{ABC}=90^o-\widehat{AEF}\Rightarrow AA'\perp EF\)

c) Ta có BH // A'C (do cùng vuông góc với AC), CH // A'B (do cùng vuông góc với AB) nên tứ giác BHCA' là hình bình hành. Suy ra H, I, A' thẳng hàng.

d) Do OI là đường trung bình của tam giác A'AH nên OI // AH,\(\dfrac{OI}{AH}=\dfrac{1}{2}=\dfrac{IG}{AG}\Rightarrow\) H, G, O thẳng hàng và \(\dfrac{OG}{HG}=\dfrac{1}{2}\). Từ đó \(S_{AHG}=2S_{AOG}\) (đpcm) 

30 tháng 4 2022

xin hình vẽ

 

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

* Bạn tự vẽ hình nha *

a) Xét tứ giác $A'HB'C$ có tổng hai góc đối nhau:

\(\widehat{HA'C}+\widehat{HB'C}=90^0+90^0=180^0\) nên \(A'HB'C\) là tứ giác nội tiếp.

Xét tứ giác $AB'A'B$ có: \(\widehat{AB'B}=\widehat{AA'B}=90^0\) cùng nhìn cạnh $AB$ nên $AB'A'B$ là tứ giác nội tiếp

b)

Theo phần a ta đã chứng minh được \(AB'A'B\) nội tiếp, do đó \(\widehat{B'AA'}=\widehat{B'BA'}\) (hai góc nội tiếp cùng nhìn cung $A'B'$ )

Mà: \(\widehat{B'AA'}=\widehat{CAD}=\frac{1}{2}\text{cung CD}\)

\(\widehat{B'BA'}=\widehat{EBC}=\frac{1}{2}\text{cung CE}\)

Do đó: \(\frac{1}{2}\text{cung CD}=\frac{1}{2}\text{ cung CE}\Rightarrow CD=CE\)

a: góc HBC+góc HCB=90 độ-góc ACB+90 độ-góc ABC=góc BAC

=>góc BHC+góc BAC=180 độ

H đối xứng K qua BC

=>BH=BK và CH=CK

Xét ΔBHC và ΔBKC có

BH=BK

CH=CK

BC chung

=>ΔBHC=ΔBKC

=>góc BKC=góc BHC

=>góc BKC+góc BAC=180 độ

=>ABKC nội tiếp

b: Gọi Ax là tiếp tuyến của (O) tại A

=>góc xAC=góc ABC=góc AEF

=>EF//Ax

=>EF vuông góc OA

c: Xét tứ giác BHCA' có

BH//CA'

BA'//CH

=>BHCA' là hbh

=>H,I,A' thẳng hàng

1 tháng 5 2021

Bạn nào lướt qua thì giúp mình phần c với nha :v hơi bí phần c

1 tháng 5 2021

chứng minh cho DE sog sog vs A'C = cách cm 2 góc SLT ∠EDC=∠DCA'

đến đó tự lm i

16 tháng 3 2020

Có góc BAC bằng 60 độ => góc C'HB'=120 độ=>

góc BHC=120 độ(1)

Có góc BAC=60 độ=>góc BOC=120 độ (2)

Từ (1) và (2) => BHC=BOC=120 độ

mà chúng nhìn đoạn BC

=> BHOC nội tiếp