Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{MNP}+\widehat{MNA}=180^0\)(hai góc kề bù)
\(\widehat{MPN}+\widehat{MPB}=180^0\)(hai góc kề bù)
mà \(\widehat{MNP}=\widehat{MPN}\)(hai góc ở đáy của ΔMNP cân tại M)
nên \(\widehat{MNA}=\widehat{MPB}\)
Xét ΔMNA và ΔMPB có
MN=MP(ΔMNP cân tại M)
\(\widehat{MNA}=\widehat{MPB}\)(cmt)
AN=PB(gt)
Do đó: ΔMNA=ΔMPB(c-g-c)
Suy ra: MA=MB(hai cạnh tương ứng)
Xét ΔMAB có MA=MB(cmt)
nên ΔMAB cân tại M(Định nghĩa tam giác cân)
b) Sửa đề: PE vuông góc với MB
Ta có: ΔMAN=ΔMBP(cmt)
nên \(\widehat{AMN}=\widehat{BMP}\)(hai góc tương ứng)
hay \(\widehat{DMN}=\widehat{EMP}\)
Xét ΔMDN vuông tại D và ΔMEP vuông tại E có
MN=MP(ΔMNP cân tại M)
\(\widehat{DMN}=\widehat{EMP}\)(cmt)Do đó: ΔMDN=ΔMEP(cạnh huyền-góc nhọn)
Suy ra: MD=ME(hai cạnh tương ứng)
c) Xét ΔMDE có MD=ME(cmt)
nên ΔMDE cân tại M(Định nghĩa tam giác cân)
\(\Leftrightarrow\widehat{MDE}=\dfrac{180^0-\widehat{DME}}{2}\)(Số đo của một góc ở đáy trong ΔMDE cân tại M)
hay \(\widehat{MDE}=\dfrac{180^0-\widehat{AMB}}{2}\)(1)
Ta có: ΔMAB cân tại M(cmt)
nên \(\widehat{MAB}=\dfrac{180^0-\widehat{AMB}}{2}\)(Số đo của một góc ở đáy trong ΔMAB cân tại M)(2)
Từ (1) và (2) suy ra \(\widehat{MDE}=\widehat{MAB}\)
mà \(\widehat{MDE}\) và \(\widehat{MAB}\) là hai góc ở vị trí đồng vị
nên DE//AB(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
góc MND=góc END
=>ΔNMD=ΔNED
=>MN=NE
b: Xét ΔNFP có
PM,FE là đường cao
PM cắt FE tại D
=>D là trực tâm
=>ND vuông góc FP
a) xét tam giác MNI và tam giác MPI có:
MI chung
NI=DI( I là trung điểm của NP)
MN=NP(giả thiết)
=>Tam giác MNI=tam giác MPI
=>Góc NIM=gócPMI
=> MI là tia phân giác của góc PMN
a) Xét ΔMNP và ΔEFP có
MP=EP(gt)
\(\widehat{MPN}=\widehat{EPF}\)(hai góc đối đỉnh)
NP=FP(gt)
Do đó: ΔMNP=ΔEFP(c-g-c)
b) Ta có: MN=ND(gt)
mà N nằm giữa M và D(gt)
nên N là trung điểm của MD
Ta có: MP=PE(gt)
mà P nằm giữa M và E(gt)
nên P là trung điểm của ME
Xét ΔMDE có
N là trung điểm của MD(cmt)
P là trung điểm của ME(cmt)
Do đó: NP là đường trung bình của ΔMDE(Định nghĩa đường trung bình của tam giác)
hay NP//DE(Định lí 2 về đường trung bình của tam giác)
l