Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất đường trung tuyến trong tam giác ta có:
\(GD=MDx\frac{2}{3}=12x\frac{2}{3}=8cm\)
đúng nha
Xét tam giác MNP có MD là trung tuyến
Mà G là trọng tâm của tam giác
=> G thuộc MD
=> GD = \(\frac{2}{3}\)MD ( theo tính chất của đường trung tuyến trong tam giác )
Mà MD = 12 ( cm )
=> GD = \(\frac{2}{3}.12\)
\(\Rightarrow GD=8\)
Vậy \(GD=8\left(cm\right)\)
Chúc bạn học tốt !!!
a: Xét tứ giác BGCD có
M là trung điểm chung của BC và GD
=>BGCD là hình bình hành
=>BG//CD
a: Xet ΔMHN vuông tại H và ΔMHP vuông tại H co
MN=MP
MH chung
=>ΔMHN=ΔMHP
b: Xet ΔMNP có
MH,NE là đường trung tuyến
MH cắt NEtại G
=>G là trọng tâm
=>MG=2GH=12m
c: MG=2GH
GH=HC
=>MG=2HC
a, xét t.giác AMB và t.giác DMC có:
AM=DM(gt)
\(\widehat{AMB}\)=\(\widehat{DMC}\)(vì đối đỉnh)
CM=BM(gt)
=>t.giác AMB=t.giác DMC(c.g.c)
b,đề bài bị thiếu
a, Vì G là trọng tâm của △ABC
\(\Rightarrow AG=\frac{2}{3}AM\) \(\Rightarrow GM=\frac{1}{3}AM\) Mà MD = MG \(\Rightarrow GM+MD=\frac{1}{3}AM+\frac{1}{3}AM\)\(\Rightarrow GD=\frac{2}{3}AM\)
=> AG = GD
=> G là trung điểm của AD
=> CG là trung tuyến của tam giác ACD
b, Xét △BGM và △CDM
Có: GM = DM (gt)
BMG = CMD (2 góc đối đỉnh)
BM = CM (gt)
=> △BGM = △CDM (c.g.c)
=> GBM = DCM (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> BG // CD (dhnb)