Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔDEF đồng dạng với ΔMNP
=>\(\dfrac{DE}{MN}=\dfrac{EF}{NP}=\dfrac{DF}{MP}\)
=>\(\dfrac{MN}{DE}=\dfrac{NP}{EF}=\dfrac{MP}{DF}\)
=>\(\dfrac{MN}{4}=\dfrac{NP}{7}=\dfrac{MP}{8}\)
Chu vi tam giác MNP bằng 38cm nên MN+NP+MP=38
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{MN}{4}=\dfrac{NP}{7}=\dfrac{MP}{8}=\dfrac{MN+NP+MP}{4+7+8}=\dfrac{38}{19}=2\)
=>\(MN=4\cdot2=8\left(cm\right);NP=7\cdot2=14\left(cm\right);MP=8\cdot2=16\left(cm\right)\)
a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có
AB/DE=AC/DF
Do đó: ΔABC\(\sim\)ΔDEF
b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)
bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE
bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
NM=1/2BC => NP/BC=1/2 (2)
MP=1/2AC => MP/AC=1/2 (3)
từ (1),(2),(3) => MNP đồng dạng với ABC
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm
a: Xét ΔDMP vuông tại D và ΔENP vuông tại E có
góc P chung
=>ΔDMP đồng dạng với ΔENP
b: ΔDMP đồng dạng với ΔENP
=>PE/PD=MP/NP=MD/NE
=>PE/6=18/12=3/2
=>PE=9cm
ΔMNP đồng dạng với ΔDEF
nên MN/DE=NP/EF=MP/DF
=>MN/3=4/8=MP/7=1/2
=>\(\dfrac{C_{MNP}}{C_{DEF}}=\dfrac{1}{2}\)
Bài 1 a) có vì hai tam giác bằng nhau thì đồng dạng với nhau bởi các cặp cạnh bằng nhau nên tương ứng tỉ lệ với nhau và bằng 1
nên tỉ số đồng dạng cũng =1
b)do tam giác A'B'C'~tam giác ABC theo tỉ số k nên A'B'/AB=k
suy ra AB/A'B'=1/k nên tam giác ABC~tam giác A'B'C' theo tỉ số 1/k
Bài 2 b) do tam giác def đồng dạng với tam giác mnp nên
de/mn=df/mp=ef/np=4/6=2/3
do df=5cm nên mp=7,5cm
do np=9cm nên ef=6cm
\(Do\Delta MNP\sim\Delta DEF\)
\(\Rightarrow\frac{DE}{MN}=\frac{EF}{NP}\Rightarrow\frac{DE}{12}=\frac{18}{8}\Rightarrow DE=27\)
Tương tự có: DF= 36
\(\Rightarrow P\Delta DEF=27+36+18=81\left(cm\right)\)