K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2022

Ta có 

\(QA^2=HQ^2+AH^2\\ \Rightarrow29^2=20^2+21^2\\ \Rightarrow841=400+441\\ \Rightarrow841=841\)

=> Tam giác HQA vuông tại H

12 tháng 2 2022

cho hình vẽ

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE và AD=AE

d: Xét ΔABC có

AD/AB=AE/AC

nên DE//BC

12 tháng 2 2016

a) tam giác ABC có BC^2=52^2=2704

mà AB^2+AC^2=20^2+48^2=2704

=> BC^2=AB^2+AC^2

=> tam giác ABC vuông tại A

b) tam giác ABC vuông tại A=> AH.BC=AB.AC

=> AH.52=20.48

=> AH.52=960

=> AH=240/13cm

15 tháng 1 2022

mình cần biết cách giải 

b: \(29^2=21^2+20^2\)

nên đây là tam giác vuông

a: Vì không có cạnh nào khi bình phương lên bằng tổng các bình phương của hai cạnh kia nên tam giác này không vuông

c: Tương tự câu a

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(BK=\sqrt{AB^2-AH^2}=9\left(cm\right)\)

CK=BC-BK=16(cm)

1) Xét ΔAPE vuông tại P và ΔAPH vuông tại P có

AP chung

PE=PH

Do đó: ΔAPE=ΔAPH(hai cạnh góc vuông)

Xét ΔAQH vuông tại Q và ΔAQF vuông tại Q có 

AQ chung

HQ=FQ

Do đó: ΔAQH=ΔAQF(hai cạnh góc vuông)

2) Ta có: \(\widehat{FAE}=\widehat{FAH}+\widehat{EAH}\)

\(=2\cdot\left(\widehat{QAH}+\widehat{PAH}\right)\)

\(=2\cdot90^0=180^0\)

Do đó: F,A,E thẳng hàng

mà AE=AF(=AH)

nên A là trung điểm của EF