Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là cạnh tam giác đều, h là đường cao
Ta có \(h=\frac{a\sqrt{3}}{2}\Rightarrow a=\frac{2\times h}{\sqrt{3}}=\frac{2\times\sqrt{3}}{\sqrt{3}}=2\)
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
Gọi R là bán kính đường tròn ngoại tiếp ΔDEF
Ta có: ΔDEF đều
=>DE=EF=DF=9cm và \(\widehat{D}=\widehat{E}=\widehat{F}=60^0\)
Xét ΔDEF có \(\dfrac{EF}{sinD}=2R\)
=>\(2R=\dfrac{9}{sin60}=6\sqrt{3}\)
=>\(R=3\sqrt{3}\left(cm\right)\)
Ta có
AM -AH =BC/2 - AH =7
=> BC -2AH =14
=> 2AH = BC-14 (1*)
Mặt khác:
AB+BC+CA= 72
=> AB+CA = 72-BC
=> (AB+AC)^2 = (72-BC)^2
=> AB^2 + CA^2 + 2BC.AH = 72^2 - 144BC + BC^2 (do AB.AC = BC.AH)
=> 2BC.AH = 5184 - 144BC (2*)
Thay (1*) vào (2*)
=> BC(BC-14) = 5184 - 144BC
=> BC^2 + 130BC - 5184 =0
=> sqrt(delta) =194
=> BC = (-130 + 194)/2 = 32
=> AH = (BC-14)/2 = 9
=> S(ABC) =BC.AH/2 = 144 cm^2
Gọi a;b là độ dài 2 cạnh góc vuông. Do tam giác vuông; ta có:
Độ dài cạnh huyền = √(a²+b²)
Độ dài đường cao = ab/√(a²+b²)
Do đó chu vi = a+b+√(a²+b²) = 72 (1)
Hiển nhiên trung tuyến phải dài hơn đường cao nên ta có:
1/2.√(a²+b²) -ab/√(a²+b²) = 7
<=> (a²+b²) -2ab = 14√(a²+b²) (2)
Kết hợp (1) và (2) ta được:
a²+b² -2ab = 14.(72-a-b)
<=> a²+b² +14a +14b -1008 = 2ab
<=> (a+b)² +14(a+b) -1008 = 4ab (3)
Từ (1) ta có:
√(a²+b²) = 72-a-b
<=> a²+b² = a²+b²+5184 -144a-144b +2ab
<=> 144(a+b) = 2ab +5184
<=> a+b = ab/72 +36 (4)
Thay (4) vào (3) ta được:
(ab/72 +36)² +14.(ab/72 +36) -1008 = 4ab
<=> (ab +2592)² + 14.72.(ab+2592) -1008.72² = 4.72²ab
<=> (ab)² +5184(ab) +2592² +1008(ab) -4.72²(ab) +14.72.2592 -1008.72² =0
<=> (ab)² -14544(ab) +4105728 =0
<=> (ab -14256)(ab -288) =0
Thử lại:
Nếu: ab = 14256 thì a+b = 14256/72 +36 = 234
Giải pt: X² -234X +14256 =0
Ta thấy: Δ' = 117²-14256 = -567 <0 nên pt vô nghiệm
Nếu: ab = 288 thì a+b = 288/72 +36 = 40
Giải pt: X² -40X² +288 =0
Ta được: X1 = 20 -4√7 ; X2 = 20 +4√7
Đây là độ dài 2 cạnh góc vuông. Từ đây tính được cạnh huyền và đường cao thấy thỏa gt.
Kết luận: Tam giác đã cho có diện tích là 144 (=ab/2)
Đường cao của tam giác đều cạnh a là \(h=\frac{a\sqrt{3}}{2}\Rightarrow\frac{a\sqrt{3}}{2}=2\sqrt{3}\Rightarrow a=4\)
Cạnh tam giác ddeuf là 4