K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2015

Đường cao của  tam giác đều cạnh  a là \(h=\frac{a\sqrt{3}}{2}\Rightarrow\frac{a\sqrt{3}}{2}=2\sqrt{3}\Rightarrow a=4\)

Cạnh tam giác ddeuf là 4

29 tháng 6 2017

Gọi a là cạnh tam giác đều, h là đường cao

Ta có \(h=\frac{a\sqrt{3}}{2}\Rightarrow a=\frac{2\times h}{\sqrt{3}}=\frac{2\times\sqrt{3}}{\sqrt{3}}=2\)

29 tháng 6 2017

Bạn có thể giải thích thêm đc kh

30 tháng 6 2021

undefined

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

29 tháng 12 2023

Gọi R là bán kính đường tròn ngoại tiếp ΔDEF

Ta có: ΔDEF đều

=>DE=EF=DF=9cm và \(\widehat{D}=\widehat{E}=\widehat{F}=60^0\)

Xét ΔDEF có \(\dfrac{EF}{sinD}=2R\)

=>\(2R=\dfrac{9}{sin60}=6\sqrt{3}\)

=>\(R=3\sqrt{3}\left(cm\right)\)

23 tháng 7 2016

 Ta có 
AM -AH =BC/2 - AH =7 
=> BC -2AH =14 
=> 2AH = BC-14 (1*) 

Mặt khác: 
AB+BC+CA= 72 
=> AB+CA = 72-BC 
=> (AB+AC)^2 = (72-BC)^2 

=> AB^2 + CA^2 + 2BC.AH = 72^2 - 144BC + BC^2 (do AB.AC = BC.AH) 

=> 2BC.AH = 5184 - 144BC (2*) 

Thay (1*) vào (2*) 

=> BC(BC-14) = 5184 - 144BC 
=> BC^2 + 130BC - 5184 =0 
=> sqrt(delta) =194 
=> BC = (-130 + 194)/2 = 32 
=> AH = (BC-14)/2 = 9 
=> S(ABC) =BC.AH/2 = 144 cm^2

30 tháng 7 2017

Gọi a;b là độ dài 2 cạnh góc vuông. Do tam giác vuông; ta có: 

Độ dài cạnh huyền = √(a²+b²) 

Độ dài đường cao = ab/√(a²+b²) 


Do đó chu vi = a+b+√(a²+b²) = 72 (1) 


Hiển nhiên trung tuyến phải dài hơn đường cao nên ta có: 

1/2.√(a²+b²) -ab/√(a²+b²) = 7 

<=> (a²+b²) -2ab = 14√(a²+b²) (2) 


Kết hợp (1) và (2) ta được: 

a²+b² -2ab = 14.(72-a-b) 

<=> a²+b² +14a +14b -1008 = 2ab 

<=> (a+b)² +14(a+b) -1008 = 4ab (3) 


Từ (1) ta có: 

√(a²+b²) = 72-a-b 

<=> a²+b² = a²+b²+5184 -144a-144b +2ab 

<=> 144(a+b) = 2ab +5184 

<=> a+b = ab/72 +36 (4) 


Thay (4) vào (3) ta được: 

(ab/72 +36)² +14.(ab/72 +36) -1008 = 4ab 

<=> (ab +2592)² + 14.72.(ab+2592) -1008.72² = 4.72²ab 

<=> (ab)² +5184(ab) +2592² +1008(ab) -4.72²(ab) +14.72.2592 -1008.72² =0 

<=> (ab)² -14544(ab) +4105728 =0 

<=> (ab -14256)(ab -288) =0 


Thử lại: 

Nếu: ab = 14256 thì a+b = 14256/72 +36 = 234 

Giải pt: X² -234X +14256 =0 

Ta thấy: Δ' = 117²-14256 = -567 <0 nên pt vô nghiệm 


Nếu: ab = 288 thì a+b = 288/72 +36 = 40 

Giải pt: X² -40X² +288 =0 

Ta được: X1 = 20 -4√7 ; X2 = 20 +4√7 

Đây là độ dài 2 cạnh góc vuông. Từ đây tính được cạnh huyền và đường cao thấy thỏa gt. 


Kết luận: Tam giác đã cho có diện tích là 144 (=ab/2)