Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác DEF vuông tại D có đường cao DI ta có:
\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)
\(\Rightarrow DI^2=\dfrac{DE^2DF^2}{DE^2+DF^2}\)
\(\Rightarrow DI^2=\dfrac{15^2\cdot20^2}{15^2+20^2}=144\)
\(\Rightarrow DI=12\left(cm\right)\)
b) Xét tam giác DEF vuông tại D có đường cao DI áp dụng Py-ta-go ta có:
\(DF^2=EF^2-DE^2\)
\(\Rightarrow DF^2=15^2-12^2=81\)
\(\Rightarrow DF=9\left(cm\right)\)
Ta có: \(DI=\sqrt{\dfrac{DF^2DE^2}{DF^2+DE^2}}\)
\(\Rightarrow DI=\sqrt{\dfrac{9^2\cdot12^2}{9^2+12^2}}=\dfrac{108}{15}\left(cm\right)\)
a) \(EF=\sqrt{3^2+4^2}=5\)(cm)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2,4\left(cm\right)\)
b) \(EF=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)
c) \(EF=\sqrt{12^2+5^2}=13\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)
\(a,\) Áp dụng Pytago \(EF=\sqrt{DE^2+DF^2}=25\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\\DH^2=FH\cdot EH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EH=\dfrac{DE^2}{EF}=9\left(cm\right)\\FH=\dfrac{DF^2}{EF}=16\left(cm\right)\\DH=\sqrt{9\cdot16}=12\left(cm\right)\end{matrix}\right.\)
\(b,\sin\widehat{E}=\cos\widehat{F}=\dfrac{DF}{EF}=\dfrac{4}{5}\approx\left\{{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Rightarrow\widehat{E}\approx53^0;\widehat{F}\approx37^0\)
\(\dfrac{DF}{EF}=\dfrac{4}{5}\)
\(\Leftrightarrow DF=\dfrac{4}{5}EF\)
\(\Leftrightarrow DF=24\left(cm\right)\)
\(\Leftrightarrow FE=30\left(cm\right)\)
\(\Leftrightarrow DI=14.4\left(cm\right)\)
trong \(\Delta DEF\) vuông tại D có
\(DK^2=EK.KF\)(đlý)\(\Rightarrow KF=\dfrac{DK^2}{EK}=\dfrac{6^2}{8}\)=4,5
ta có:EF=EK+KF=8+4,5=12,5
\(DE^2=EF.EK\left(đlý\right)\)=12,5.8=100\(\Rightarrow DE=10\)
\(DF^2=EF.KF\)(đlý)=12,5.4,5=56,25\(\Rightarrow\)DF=7,5
Áp dụng hệ thức lượng, ta có:
\(DH^2=FH.EH\\ DH^2=\left(25-EH\right)EH\\ 12^2=\left(25-EH\right)EH\\ \Rightarrow EH=16\left(cm\right)\\ \Rightarrow HF=25-16=9\left(cm\right)\)
\(DF^2=EF.FH\\ \Leftrightarrow DF^2=25.9\\ \Rightarrow DF=\sqrt{225}=15\left(cm\right)\)
Áp dụng định lí py-ta-go, ta có:
\(DE^2=DH^2+HF^2\\ \Leftrightarrow DE^2=12^2+16^2\\ \Rightarrow DE=\sqrt{400}=20\left(cm\right)\)
a: ΔDEF vuông tại D
=>\(DE^2+DF^2=EF^2\)
=>\(EF^2=0,9^2+12^2=144,81\)
=>\(EF=\sqrt{144,81}\)(cm)
Xét ΔDEF vuông tại D có \(tanE=\dfrac{DF}{DE}\)
=>\(tanE=\dfrac{12}{0,9}=\dfrac{120}{9}=\dfrac{40}{3}\)
b: Xét ΔDEF vuông tại D có
\(sinF=\dfrac{DE}{EF}=\dfrac{0.9}{\sqrt{144,81}}\)
\(cosF=\dfrac{DF}{EF}=\dfrac{12}{\sqrt{144,81}}\)
\(tanF=\dfrac{0.9}{12}=\dfrac{9}{120}=\dfrac{3}{40}\)
\(cotF=\dfrac{12}{0.9}=\dfrac{40}{3}\)
- Áp dụng định lý pitago vào tam giác DEF vuông tại D :
\(DE=\sqrt{FE^2-DF^2}=27\left(cm\right)\)
- Áp dụng hệ thức lượng vào tam giác DEF vuông tại D đường cao DI
\(\left\{{}\begin{matrix}DI.FE=DE.DF\\DE^2=EI.FE\\DF^2=FI.FE\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}DI=21,6\\EI=16,2\\FI=28,8\end{matrix}\right.\) ( cm )
Vậy ...
pyta go \(=>DE=\sqrt{ÈF^2-DF^2}=\sqrt{45^2-36^2}=27cm\)
áp dụng hệ thức lượng
\(=>DI.EF=DE.DF=>DI=\dfrac{27.36}{45}=21,6cm\)
\(=>DE^2=EI.EF=>EI=\dfrac{27^2}{45}=16,2cm\)
\(=>FI=45-16,2=28,8cm\)
Áp dụng định lí Pytago vào ΔEKF vuông tại K, ta được:
\(EF^2=EK^2+KF^2\)
\(\Leftrightarrow KF^2=20^2-12^2=256\)
hay KF=16(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔFED vuông tại E có EK là đường cao ứng với cạnh huyền FD, ta được:
\(EF^2=FK\cdot FD\)
\(\Leftrightarrow FD=\dfrac{20^2}{16}=\dfrac{400}{16}=25\left(cm\right)\)
Áp dụng định lí Pytago vào ΔDEF vuông tại E, ta được:
\(FD^2=EF^2+ED^2\)
\(\Leftrightarrow ED^2=25^2-20^2=225\)
hay ED=15(cm)