Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Xét \(\Delta MNP\) cân tại \(M\) có
\(\widehat{N}=\widehat{D}=\dfrac{180^o-\widehat{M}}{2}=\dfrac{180^o-70^o}{2}=55^o\)
2, Xét \(\Delta DEF\) cân tại \(D\)
\(\Rightarrow\widehat{E}=\widehat{F}=40^o\) ( hai góc đáy bằng nhau )
Ta có tổng 3 góc trong tam giác
\(\widehat{D}+\widehat{E}+\widehat{F}=180^o\\ =>\widehat{D}=180^o-40^o-40^o=100^o\)
1: góc N=góc P=(180-70)/2=55 độ
2: góc F=góc E=40 độ
góc D=180-40*2=100 độ
Vì \(\Delta ABC = \Delta DEF\) nên BC = EF ( 2 cạnh tương ứng); \(\widehat A = \widehat {EDF}\) ( 2 góc tương ứng)
Mà BC = 4 cm nên EF = 4 cm
Trong tam giác ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) ( định lí tổng ba góc trong một tam giác)
\(\begin{array}{l} \Rightarrow \widehat A + 40^\circ + 60^\circ = 180^\circ \\ \Rightarrow \widehat A = 180^\circ - 40^\circ - 60^\circ = 80^\circ \end{array}\)
Mà \(\widehat A = \widehat {EDF}\) nên \(\widehat {EDF} = 80^\circ \)
Câu 1 lỗi font còn câu 2 là 60 độ nhé do x và góc A đều bù góc FIE
Bài 9: Cho tam giác DEF có D^ - F^ = 50° và E^ = 80°. Số đo của góc D^ và F^ lần lượt là?
Xét tam giác DEF có
\(\widehat{D}+\widehat{E}+\widehat{F}=180^o\\ \Rightarrow\widehat{D}=180^o-\left(\widehat{E}+\widehat{F}\right)\\ =180^o-120^o=60^o\)
Mà
\(\widehat{E}=\widehat{F}=60^o\\ \Rightarrow\Delta DEF.cân\)
Ta có: tam giác DEF = tam giác HIK
=> DE = HI ; EF = IK ; DF = HK
=> góc D = góc H
góc E = góc I
góc F = góc K
a/ Ta có: góc E = góc I (vì tam giác DEF = HIK)
Mà góc E = 400 => góc I = 400
b/ Chu vi tam giác DEF= chu vi tam giác HIK
= DE + EF + HK = DE+EF+DF=2+5+6=13 (cm)
Vậy chu vi tam giác DEF = chu vi tam giác HIK = 13 cm
a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có
DE=DF
DH chung
=>ΔDHE=ΔDHF
b: ΔDHE=ΔDHF
=>góc EDH=góc FDH=40/2=20 độ
c: góc FKD=góc FHD=90 độ
=>FHKD nội tiếp
=>góc KDH=góc KFH
Ta có: \(D+E+F=180^0\)
mà \(D=90^0\)
\(\Rightarrow E+F=90^0\)
Ta lại có: \(E=2F\)
\(\Rightarrow3F=90^0\)
\(\Rightarrow F=30^0\)
\(\Rightarrow E=30^0.2=60^0\)
a,\(=>\angle\left(EDF\right)=180^o-\angle\left(DEF\right)-\angle\left(DFE\right)=80^O\)
b,\(\angle\left(EDM\right)=\angle\left(MDF\right)=\dfrac{\angle\left(EDF\right)}{2}=40^o\)
c,\(\angle\left(DME\right)=\angle\left(DFE\right)+\angle\left(MDF\right)=80^o\)