K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔDEF có DK là đường phân giác ứng với cạnh EF(gt)

nên \(\dfrac{KE}{KF}=\dfrac{DE}{DF}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{KE}{KF}=\dfrac{27}{9}=3\)

Ta có: \(\dfrac{KE}{KF}=3\)(cmt)

\(\Leftrightarrow KE=3\cdot KF=3\cdot6=18\left(cm\right)\)

Vậy: KE=18cm

a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xet ΔEDF có EK là phân giác

nên DK/DE=FK/FE

=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1

=>DK=3cm; FK=5cm

b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có

góc DEK=góc HEI

=>ΔDEK đồng dạng với ΔHEI

=>ED/EH=EK/EI

=>ED*EI=EK*EH

c: góc DKI=90 độ-góc KED

góc DIK=góc HIE=90 độ-góc KEF

mà góc KED=góc KEF
nên góc DKI=góc DIK

=>ΔDKI cân tại D

mà DG là trung tuyến

nên DG vuông góc IK

18 tháng 3 2023

bạn ơi, góc DKI vuông góc từ đâu vậy?

 

a) Xét ΔDEF có 

EM là đường phân giác ứng với cạnh DF(gt)

nên \(\dfrac{DM}{DE}=\dfrac{MF}{EF}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{DM}{5}=\dfrac{MF}{6}\)

mà DM+MF=DF(M nằm giữa D và F)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DM}{5}=\dfrac{MF}{6}=\dfrac{DM+MF}{5+6}=\dfrac{DF}{11}=\dfrac{5}{11}\)

Do đó: 

\(\dfrac{DM}{5}=\dfrac{5}{11}\)

hay \(DM=\dfrac{25}{11}cm\)

Vậy: \(DM=\dfrac{25}{11}cm\)

Đường cao AH hay DK vậy bạn?

a: EP/FP=DE/DF=3/4

b: Xet ΔFHP vuông tại H và ΔFDE vuông tại D có

góc HFP chung

=>ΔFHP đồng dạng vơi ΔFDE

c: ΔFHP đồng dạng với ΔFDE

=>HP/DE=FP/FE=4/7

=>HP/9=4/7

=>HP=36/7(cm)

27 tháng 3 2023

a: EP/FP=DE/DF=3/4

b: Xet ΔFHP vuông tại H và ΔFDE vuông tại D có

góc HFP chung

=>ΔFHP đồng dạng vơi ΔFDE

c: ΔFHP đồng dạng với ΔFDE

=>HP/DE=FP/FE=4/7

=>HP/9=4/7

=>HP=36/7(cm)

5 tháng 5 2022

DF=12 cm

a: ΔFME vuông tại M

=>MF^2+ME^2=EF^2

=>\(EF=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

Xét ΔFME vuông tại M có 

\(sinE=\dfrac{MF}{EF}=\dfrac{6}{3\sqrt{13}}=\dfrac{2}{\sqrt{13}}\)

\(cosE=\dfrac{ME}{EF}=\dfrac{3}{\sqrt{13}}\)

tan E=2/căn 13:3/căn 13=2/3

cot E=1:2/3=3/2

b: ΔDEF vuông tại F có FM là đường cao

nên FM^2=DM*ME

=>DM=6^2/9=4cm

DE=9+4=13cm

ΔDEF vuông tại F

=>FD^2+FE^2=ED^2

=>FD^2=13^2-(3căn 13)^2=169-117=52

=>FD=2căn 13(cm)

c: Xét ΔDMF vuông tại M có

sin D=FM/FD=6/2căn 13=3/căn 13

cos D=MD/DF=2/căn 13

tan D=3/căn 13:2/căn 13=3/2

cot D=1:3/2=2/3

Câu 9:

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=5^2+12^2=169\)

=>BC=13(cm)

Xét ΔABC có BF là phân giác

nên \(\dfrac{AF}{AB}=\dfrac{CF}{CB}\)

=>\(\dfrac{AF}{5}=\dfrac{CF}{13}\)

mà AF+CF=AC=12cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AF}{5}=\dfrac{CF}{13}=\dfrac{AF+CF}{5+13}=\dfrac{12}{18}=\dfrac{2}{3}\)

=>\(AF=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\simeq3,3\left(cm\right);CF=13\cdot\dfrac{2}{3}=\dfrac{26}{3}\simeq8,7\left(cm\right)\)

Câu 8:

b: ΔFDE vuông tại D

=>\(DE^2+DF^2=FE^2\)

=>\(FE^2=6^2+8^2=100=10^2\)

=>FE=10(dm)

Xét ΔDFE có DK là phân giác

nên \(\dfrac{EK}{DE}=\dfrac{FK}{DF}\)

=>\(\dfrac{EK}{8}=\dfrac{FK}{6}\)

=>\(\dfrac{EK}{4}=\dfrac{FK}{3}\)

mà EK+FK=EF=10dm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{EK}{4}=\dfrac{FK}{3}=\dfrac{EK+FK}{4+3}=\dfrac{10}{7}\)

=>\(EK=\dfrac{40}{7}\simeq5,71\left(cm\right);FK=\dfrac{30}{7}\simeq4,29\left(cm\right)\)