Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: ΔDEF cân tại D
Xét ΔDEI và ΔDFI có
DE=DF
EI=FI
DI chung
=>ΔDEI=ΔDFI
b: ΔDEF cân tại D
mà DI là trung tuyến
nên DI là trung trực của EF
c: Xét ΔDEF có I,N lần lượt là trung điểm của FE,FD
=>IN là đường trung bình
=>IN//DE
a: Xét ΔDEI và ΔDFI có
DE=DF
EI=FI
DI chung
Do đó: ΔDEI=ΔDFI
b: Ta có: ΔDEF cân tại D
mà DI là đường trung tuyến
nên DI là đường cao
a.Xét tam giác DEI và tam giác DFI, có:
^E = ^F ( DEF cân )
DE = DF ( DEF cân )
EI = FI ( gt )
Vậy tam giác DEI = tam giác DFI ( c.g.c )
b.Ta có: DI là đường trung tuyến trong tam giác cân DEF
=>DI vuông góc EF
c.Ta có: DN = FN ( gt )
EI = FI ( gt )
=> IN là đường trung bình của tam giác DEF
=> IN//ED
bn tham khỏa đường link này nha /hoi-dap/detail/220486054053.html
a)tam giác dei=tg dfi (c.c.c)
b)nên góc dif bằng góc die bằng 90 độ nên di vuông góc với ef
c)EN là đường trung tuyến. nên nd=nf nên in là đường trung tuyến của tam giác vuông dif
trên tia đối tia ini vẽ điểm m sao cho nm=ni
chứng minh được tam giác dni=tam giác fnm (c.g.c)
nên di=ef (2ctu);và góc din bằng góc nmf(mà 2 góc này ở vị trí so le trong )nên di song song với mf nên goc dif bằng góc mfi bằng 90 độ
chứng minh đc tam giác dif =tam giác mfi (c.g.c) nên cạnh df =im nên in=1/2df nên in=nf nên tam giác inf cân tai n nên góc nif bằng nfi mà nfi = góc dei (tam giác def cân tại d) nên góc nif bằng góc dei
mà 2 góc này ở vị trí đồng vị nên in song song với de
bạn ơi ,bạn tự vẽ hình đi nha
a: Xét ΔDEI và ΔDFI có
DE=DF
DI chung
IE=IF
Do đó: ΔDEI=ΔDFI
b: Ta có: ΔDEI=ΔDFI
nên \(\widehat{DIE}=\widehat{DIF}\)
mà \(\widehat{DIE}+\widehat{DIF}=180^0\)
nên \(\widehat{DIE}=\widehat{DIF}=\dfrac{180^0}{2}=90^0\)
a) ∆DEI = ∆DFI có:
DI là cạnh chung
DE = DF ( ∆DEF cân)
IE = IF (DI là trung tuyến)
=> ∆DEI = ∆DFI (c.c.c)
b) Vì ∆DEI = ∆DFI =>
mà = 1800 ( kề bù)
nên = 900
\(\text{a)Xét }\Delta DEI\text{ và }\Delta DFI\text{ có:}\)
\(DE=DF\left(\Delta DÈ\text{ cân tại D}\right)\)
\(\widehat{DEF}=\widehat{DFE}\left(\Delta DEF\text{ cân tại D}\right)\)
\(DI\text{ chung}\)
\(\Rightarrow\Delta DEI=\Delta DFI\left(c-g-c\right)\)
\(\text{b)Vì }\Delta DEI=\Delta DFI\left(cmt\right)\)
\(\Rightarrow\widehat{DIE}=\widehat{DIF}\left(\text{hai góc tương ứng}\right)\)
\(\text{Mà chúng kề bù}\)
\(\Rightarrow\widehat{DIE}=\widehat{DIF}=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow DI\perp EF\)
\(\text{c)K bt sorry}\)
Mik vẽ trên máy nó k chính xác lắm có vãi chỗ bị lệch bn thông cảm
a) Vì △DEF là tam giác cân nên DE = DF
Xét △DEI và△DFI có:
DE = DF
EI = IF
DI : cạnh chung
Suy ra △DEI = △DFI(c.c.c)
b) Vì △DEF là tam giác cân có đường trung tuyến DI
nên DI đồng thời là đường cao của △DEF
Suy ra \(\widehat{DIE}\) là góc vuông.
c) △DIE vuông tạ I có:
DE2 = DI2 + IE2 (định lí Pi-ta-go)
DE2 = 122 + 52
DE2 = 169
DE = \(\sqrt{169}\)= 13 (cm)
a: Xét ΔDEI và ΔDFI có
DE=DF
EI=FI
DI chung
=>ΔDEI=ΔDFI
b: ΔDEI=ΔDFI
=>góc DIE=góc DIF=180/2=90 độ
=>góc DIE và góc DIF là những góc vuông
c: EI=FI=10/2=5cm
=>DE=căn 5^2+12^2=13cm
Diem N o dau the ban
a) xét tam giác DEI và tam giác DFI có:
góc DIE = góc DIF = 900 (gt)
DI chung
EI = IF (gt)
=> tam giác DEI = tam giác DFI (ch-gn)
b) tam giác DEF cân tại D có DI là trung truyến
=> DI là đường cao
=> DI vuông góc EF
c) đề có sự cố ko giải được