Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: giống bài vừa nãy t làm cho bạn rồi!
Câu 2:
vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)
Câu 3 :
sửa đề chút nha : EF là tia phân giác góc DEH
ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)
mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)
=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)
a) Gọi H là giao điểm đường trung trực của EF và EF
Xét Δ KEF có :
KH là đường trung trực của EF
⇒ KH vừa là đường cao, trung tuyến của Δ KEF
⇒ Δ KEF là tam giác cân tại K
b) Xét Δ vuông DEF có :
\(\widehat{DEF}+\widehat{DFE}=90^o\)
\(\Rightarrow\widehat{DEF}=90^o-\widehat{DFE}\)
\(\Rightarrow\widehat{DEF}=90^o-40^o\)
\(\Rightarrow\widehat{DEF}=50^o\)
mà \(\widehat{DEK}+\widehat{KEF}=\widehat{DEF}\)
\(\widehat{KEF}=\widehat{DFE}=40^o\) (Δ KEF là tam giác cân tại K)
\(\Rightarrow\widehat{DEK}=\widehat{DEF}-\widehat{KEF}=50^o-40^o=10^o\)
1 ) Do tam giác ABC cân tại A , AM là trung tuyến
=> AM là đường cao của BC
Lại có : BE là đường cao của AC
Mà BE cắt AM tại H
=> H là trực tâm của tam giác ABC .
=> CH vuông góc với AB
2 ) Vào mục câu hỏi hay :
Câu hỏi của Hỏa Long Natsu ( mình )
Chúc bạn học tốt !!!
a: Xét ΔEDK có
EM là đường cao
EM là đường phân giác
Do đó: ΔEDK cân tại E
b: Xét ΔEDM và ΔEKM có
ED=EK
\(\widehat{DEM}=\widehat{KEM}\)
EM chung
DO đó: ΔEDM=ΔEKM
Suy ra: DM=DK
mà ED=EK
nên EM là đường trung trực của DK
a: Xét ΔDEK và ΔDFK có
DE=DF
EK=FK
DK chung
Do đó: ΔDEK=ΔDFK
b: Ta có: ΔDEF cân tại D
nên \(\widehat{DEF}=\widehat{DFE}\)
c: Xét ΔDEF cân tại D có DK là đường trung tuyến
nên DK là đường cao
Xét ΔDEF có
DK là đường cao
EM là đường cao
DK cắt EM tại H
Do đó: H là trực tâm của ΔDEF
Xét ΔDEK và ΔDFK có
DE=DF
EK=FK
DK chung
=> ΔDEK=ΔDFK
Ta có ΔDEF cân tại D
=> \(\widehat{DEF}=\widehat{DFE}\)
Trong tam giác DEF cân tại D có
DK là đường trung tuyến
=> DF là đường cao
Trong ΔDEF có
DK là đường cao
EM là đường cao
DK cắt EM tại H
nên là trực tâm của ΔDEF