Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABC cân tại A, ta có:
góc B = góc C ( tính chất tam giác cân )
Xét tam giác ABC ta có:
góc A + góc B + góc C = 180 độ (định lý tổng ba góc trong tam giác)
mà góc A= 120 độ (gt) , góc B = góc C ( cmt)
-> 120 độ + 2B = 180 độ
-> 2B = 180-120=60 độ
-> B=60 :2=30 độ.
Vì trong tam giác cân đường phân giác cũng đồng thời là đường cao
-> AD vuông góc với BC
vì AD song song với BE
mà góc ADC và góc EBC là 2 góc đồng vị
-> ADC = EBC -> EBC = 90 độ
Ta có : EBC = ABC + ABE
mà EBC = 90 độ , ABC=30 độ
-> ABE = 90-30=60 độ
Ta có : BAE + BAC = 180 độ ( 2 góc kề bù )
mà BAC = 120 đô
-> BAE = 180-120 =60 độ
XÉT tam giác ABE có góc BAE = 60 độ , góc ABE = 60độ
-> tam giác ABE đều
a, Xét tam giác ABC cân tại A, ta có:
góc B = góc C ( tính chất tam giác cân )
Xét tam giác ABC ta có:
góc A + góc B + góc C = 180 độ (định lý tổng ba góc trong tam giác)
mà góc A= 120 độ (gt) , góc B = góc C ( cmt)
-> 120 độ + 2B = 180 độ
-> 2B = 180-120=60 độ
-> B=60 :2=30 độ.
Vì trong tam giác cân đường phân giác cũng đồng thời là đường cao
-> AD vuông góc với BC
vì AD song song với BE
mà góc ADC và góc EBC là 2 góc đồng vị
-> ADC = EBC -> EBC = 90 độ
Ta có : EBC = ABC + ABE
mà EBC = 90 độ , ABC=30 độ
-> ABE = 90-30=60 độ
Ta có : BAE + BAC = 180 độ ( 2 góc kề bù )
mà BAC = 120 đô
-> BAE = 180-120 =60 độ
XÉT tam giác ABE có góc BAE = 60 độ , góc ABE = 60độ
-> tam giác ABE đều
a.
EAB + BAC = 1800
EAB + 1200 = 1800
EAB = 1800 - 1200
EAB = 600
AD là tia phân giác của BAC
=> BAD = DAC = BAC/2 = 1200/2 = 600
AD // EB
=> DAB = EBA (2 góc so le trong)
mà DAB = EAB ( = 600 )
=> EBA = EAB
=> Tam giác EAB cân tại E
mà EAB = 600
=> Tam giác ABE đều
b.
BAC = 1200
=> Tam giác ABC tù
=> BC là cạnh lớn nhất
=> BC < AB
mà AB = EB (tam giác ABE đều)
=> BC < EB (1)
Tam giác ABC có:
BC < AB + AC (bất đẳng thức tam giác)
mà AB = AE (tam giác ABE đều)
=> BC < AB + AE
=> BC < EC (2)
Từ (1) và (2), ta có:
EC > BC > EB
(Tự vẽ hình nhá)
a) AD là tia phân giác của góc BAC nên DF = DE (t/c điểm nằm trên đg phân giác) (1)
và góc BAD = góc CAD = góc BAC : 2 = 120o : 2 = 60o
Xét tam giác ADE vuông tại E có: góc ADE = 90o - góc CAD = 90o - 60o = 30o
Tương tự cũng được góc ADF = 30o
Do đó góc FDE = góc ADE + góc ADF = 60o (2)
Từ (1) và (2) => tam giác DEF đều
b) tam giác BID = tam giác CKD (g.c.g) => DI = DK
=> tam giác DIK cân
c) Cái này thì chỉ có tam giác ABC cân tại A cho ở đề bài thì mới làm được. Chứ như này thì mình chịu.
a,b,c tớ làm ở đây *giống nhau quá á* => /hoi-dap/question/48493.html
Còn bài tính theo ý:
Thì do tam giác ADF là tam giác vuông có 1 góc là 60 độ
=> cạnh huyền bằng cách góc vuông đối diện với góc 30 độ => AD=2AF=2.(AC-FC)=2,(CM-FC)=2.(m-n)
bạn tự vẽ hình nhé
a) ta có:
EAB + CAB = 1800 ( 2 góc kề bù )
EAB + 1200 = 1800
=> EAB = 1800 - 1200 = 600 (1)
vì: EB // AD
=> EBA = BAD = 120/2 = 600
mà EAB + ABE + BEA = 1800
=> 600 + 600 + BEA = 1800
=> BEA = 1800 - 600 - 600 = 600
=> TAM GIÁC ABE ĐỀU (CÓ 3 GÓC = 600) (đpcm)
a, xét hai tam giác AED và AFD có:
góc AFD = góc AED (góc vuông)
góc EAD= góc FAD (AD là tia phân giác của góc A)
AD cạnh chung
nên tam giác vuông AED = tam giác vuông AFD ( cạnh huyền góc nhọn)
từ giả thiết trên
=> DE=DF
=> tam giác DEF là tam giác cân
Mà:
D là góc đối của góc A
DA là tia phân giác của A=120 độ
=> D= 60 độ Áp dụng tính chất tổng ba góc trong một tam giác ta có 180‐ 60 = 120 độ
DEF là tam giác cân nên góc E= góc F nên 120/2= 60 độ
Vậy góc D= E= F= 60 độ hay DEF là tam giác đều
b. Tam giác EAD=tam giác FAD(ch‐gn)
=>AE=AF
Mà KE=FI
=> AE+EK=AF+FI
=> AK=AI
Xét tam giác AKD và tam giác AID
AK=AI
KAD=IAK
AD chung
=> tam giác AKD= tam giác AID(cgc)
=> DK=DI
=> ΔDIK cân
=> đcpcm
c, Có:
^BAC + ^MAC = 180°
=> ^MAC = 180° - ^BAC
=> ^MAC = 180° - 120°
=> ^MAC = 60°
Lại có:
AD // MC
=> ^MCA = ^CAD = 60°
=> △ACM đều
vi be song song voi ad
ma ad vuong goc voi bc ( cho nay minh lam hoi tat)
vay vay be vuong goc voi bc ma goc EBA+ ABD = EBD = 90O
VAY EBA = 600
VAy eba =eab=600(cho nay ban phai tinh goc eab bang tc 2 goc ke bu)
vây tam gia abe deu
b(co 3 goc moi goc bang 90;60;30do ban tu giai dua vao tc canh doi dien voi goc lon hon)
t i c k nha
a: Ta có: \(\widehat{BEA}=\widehat{EAC}\)(BE//AC)
mà \(\widehat{CAE}=\widehat{BAE}\)
nên \(\widehat{BEA}=\widehat{BAE}\)
hay ΔBAE cân tại B
b: \(\widehat{ABE}=180^0-2\widehat{BAE}=180^0-70^0=110^0\)
a) AD là phân giác \(\widehat{A}\) (gt).
Mà \(\widehat{BED}=\widehat{CAD}\) (BE // AC).
\(\Rightarrow\widehat{BAD}=\widehat{BED.}\)
\(\Rightarrow\) Δ BAE cân tai B.
b) Δ BAE cân tai B (cmt).
\(\Rightarrow\) \(\widehat{ABE}=180^o-2\widehat{BAE}\left(\widehat{BAE}=\widehat{BEA}\right).\)
\(\widehat{ABE}=180^o-2.35=110^o.\)
a, Có BE // AD (gt)
=> góc EBA = góc BAD (2 góc so le trong)
=> góc EBA = góc BAD = 1/2 góc BAC = 120o/2 = 60o (1)
Tam giác BEA có: góc BEA + góc EBA = góc BAC (t/c góc ngoài)
=> góc BEA = góc BAC - góc EBA = 120o - 60o = 60o (2)
Từ (1)(2) => Tam giác BEA cân
Mà tam giác BEA có : góc EBA = 60o (c/m trên)
=> tam giác BEA đều
b, Tam giác ABC cân (gt) => góc ABc = góc ACB = 90o - góc BAC/2 = 90o - 120o/2 = 30o
Tam giác BEC có: góc BEC + góc ECB +góc CBE = 180o ( đ/lí tổng 3 góc )
=> góc CBE = 180o - góc BEC - góc ECB
=>góc CBE = 180o - 60o - 30o = 90o
Có: Góc ECB < góc BEC < góc CBE (vì 30o < 60o < 90o)
=> EB < BC < EC (quan hệ giữa góc và cạnh đối diện trong tam giác)