K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bổ sung đề: D và E lần lượt là trung điểm của AB và AC

a) Ta có: \(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)

\(AE=EC=\dfrac{AC}{2}\)(E là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AD=DB=AE=EC

Xét ΔABE và ΔACD có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

AE=AD(cmt)

Do đó: ΔABE=ΔACD(c-g-c)

b) Ta có: ΔABE=ΔACD(cmt)

nên BE=CD(hai cạnh tương ứng)

c) Xét ΔDBC và ΔECB có

DB=EC(cmt)

\(\widehat{DBC}=\widehat{ECB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔDBC=ΔECB(c-g-c)

Suy ra: \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)

hay \(\widehat{KBC}=\widehat{KCB}\)

Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)

nên ΔKBC cân tại K(Định lí đảo của tam giác cân)

d) Xét ΔABK và ΔACK có 

AB=AC(ΔABC cân tại A)AK chung

BK=CK(ΔKBC cân tại K)Do đó: ΔABK=ΔACK(c-c-c)

Suy ra: \(\widehat{BAK}=\widehat{CAK}\)(hai góc tương ứng)

mà tia AK nằm giữa hai tia AB,AC

nên AK là tia phân giác của \(\widehat{BAC}\)(đpcm)

a) Ta có: \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

\(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AD=AE

Xét ΔABE và ΔACD có

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

AE=AD(cmt)

Do đó: ΔABE=ΔACD(c-g-c)

4 tháng 3 2021

Bài này dễ đợi mình !

12 tháng 2 2019

Anh tự kẻ hình : 

a, xét tam giác ABE và tam giác ACD có  : góc A chung

AB = AC (gt) 

AE = 1/2AC do E là trđ của AC (gt)

AD = 1/2AB do D là trđ của AB (gt) 

=> AD = AE

=> tam giác ABE và tam giác ACD (c - g - c)

b,tam giác ABE và tam giác ACD (Câu a) 

=> BE = CD (đn) 

12 tháng 2 2019

A B C D E K

Cm: Ta có: AB = AD + DB

                 AC = AE + EC 

Và AD = DB (gt); AE = EC (gt); AB = AC

=> AD = DB = AE = EC

Xét t/giác ABE và t/giác ACD

có AB = AC (gt)

 góc A : chung

AE = AD (cmt)

=> t/giác ABE = t/giác ACD (c.g.c)

b) Ta có: t/giác ABE = t/giác ACD (cmt)

=> BE = CD (hai cạnh tương ứng)

c) Ta có: t/giác ABE = t/giác ACD (cmt)

=> góc ABE = góc ACD (hai góc tương ứng)

=> góc ADC = góc AEB (hai góc tương ứng)

Mà góc ADC + góc CDB = 1800

      góc AEB + góc BEC = 1800

=> góc CDB = góc BEC 

Xét t/giác BDK và t/giác CEK

có góc KDB = góc KEC (cmt)

  DB = EC (cmt)

  góc DBK = góc ECK (cmt)

=> t/giác BDK = t/giác CEK (g.c.g)

=> KB = KC (hai cạnh tương ứng)

=> t/giác KBC là t/giác cân tại K

c) Xét t/giác ABK và t/giác ACK

có AB = AC (gt)

 BK = KC (cmt)

 AK : chung

=> t/giác ABK = t/giác ACK (c.c.c)

=> góc BAK = góc KAC (hai góc tương ứng)

=> AK là tia p/giác của góc BAC

1 tháng 3 2017

Xét tam giác ABE và tam giác ACD :

có :+ AB = AC ( theo GT )

        + \(\widehat{A}\)là góc chung 

         + AD = AE (theo GT )

=> tam giác ABE = tam giác ACD ( cgc)

b) ta có ; tam giác ADE -= tam giác ACD => BE = CD ( VÌ 2 CẠNH TƯƠNG ỨNG )

c) TA có : tam giác ABE = tam giác ACD => \(\widehat{B}\)\(\widehat{C}\)( VÌ 2 GÓC TƯƠNG ỨNG )

=> Tam giác KBC ( cân đỉnh K )

21 tháng 2 2018

éo bít @@@@éo bít @@@@éo bít @@@@éo bít @@@@

11 tháng 2 2020

a, D, E là trung điểm của AB và AC (gt)

AB = AC do tam giác ABC cân tại A (gt)

=> AD = AE = AB/2

xét tam giác ABE và tam giác ACD có : góc A chung

AB = AC (cmt)

=> tam giác ABE = tam giác ACD (c-g-c)

b, tam giác ABE = tam giác ACD (Câu a)

=> BE = CD (đn)

c, tam giác ABE = tam giác ACD (câu a)

=> góc ABE = góc ACD (đn)

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc ABE + góc EBC = góc ABC

góc ACD + góc DCB =góc ACB

=> góc KBC = góc KCB 

=> tam giác KBC cân tại K (đn)

d, tam giác KBC cân tại K (câu c)

=> BK = CK (đn)

xét tam giác AKB và tam giác AKC có : AB = AC

góc ABK = góc ACK 

=> tam giác AKB = góc AKC (c-g-c)

=>góc BAK = góc CAK (đn)  mà AK nằm giữa AB và AC 

=> AK là phân giác của góc BAC (đn)

Kham khảo phần a nha , còn b + c tớ tự lm , d chưa nghĩ ra 

a, Ta cs : AB = AC ( cân tại A )

Lại cs : \(\hept{\begin{cases}D\in AB\\E\in AC\end{cases}\Rightarrow\hept{\begin{cases}AB=AC+DB\\AC=AE+EC\end{cases}}}\)

Và : \(\hept{\begin{cases}AD=DB\left(DlatrungdiemcuaAB\right)\\AE=EC\left(ElatrungdiemcuaAC\right)\end{cases}}\)

=> AD = BD = AE = EC

Xét \(\Delta\)ABE và \(\Delta\)ACD có :

AE = AD (cmt)

^A_chung

AB = AC (gt)

=> \(\Delta\)ABE = \(\Delta\)ACD(c.g.c)

b, Vì \(\Delta\)ABE = \(\Delta\)ACD 

=> BE = CD (2 cạnh tương ứng)

c, Xét \(\Delta\)DBC và \(\Delta\)ECB cs :

BD = EC (cmt)

^DBC = ^ECB (phần a)

BC_chung

=> \(\Delta\)DBC = \(\Delta\)ECB(c.g.c)

=> ^DCB = ^EBC (2 góc tương ứng)

Xét \(\Delta\)KBC cs :

^KBC = ^KCB (cmt)

=> đpcm

25 tháng 3 2020

d ) +) Xét ∆ABK và ∆ACK có

AB = AC (do ∆ ABC cân tại A)

AK : cạnh chung

BK = CK  (do ∆BCK cân tại K )

=> ∆ABK = ∆ACK (c-g-c)

=> BAK = CAK (2 góc tương ứng )

=> AK là phân giác góc BAC

Học tốt

_Nicole Elizabeth_

5 tháng 2 2016

a/ Ta có AB=AC(gt)

Mà D và E là trung điểm của AB và AC

=> AD=BD=AE=EC

Xét tam giác ABE và tam giác ACD có:

AB=AC(gt)

Góc A chung

AE=AD(cmt)

=> tam giác ABE= tam giác ACD(c-g-c)

b/ Ta có tam giác ABE= tam giác ACD(c-g-c)

=> góc ABE=góc ACD

=> góc KBC=góc KCB vì tam giác ABC cân tại A

Vậy tam giác KBC cân tại K