K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Xét (O) có 

ΔABC nội tiếp đường tròn(gt)

nên O là giao điểm ba đường trung trực của ΔABC

hay AO là đường trung trực của BC

⇒AO⊥BC

Ta có: AO⊥BC(cmt)

AO⊥AE(AE là tiếp tuyến có A là tiếp điểm của (O))

Do đó: AE//BC(Định lí 1 từ vuông góc tới song song)

2) Xét ΔADE và ΔCDB có 

\(\widehat{ADE}=\widehat{CDB}\)(hai góc đối đỉnh)

DA=DC(D là trung điểm của AC)

\(\widehat{DAE}=\widehat{DCB}\)(hai góc so le trong, AE//BC)

Do đó: ΔADE=ΔCDB(c-g-c)

⇒AE=CB(hai cạnh tương ứng)

Xét tứ giác ABCE có 

AE//CB(cmt)

AE=CB(cmt)

Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

 

13 tháng 11 2021

a: Ta có: BC⊥AH

AH⊥AE

Do đó: BC//AE

13 tháng 11 2021

Sai rồi, NGU thì CHẾT đi.

1: AB=AC

OB=OC

Do đó; AO là trung trực của BC

=>AO vuông góc với BC

=>BC//AE

2: Xét ΔDAE và ΔDCB có

góc DAE=góc DB

DA=DC

góc ADE=góc CDB

Do đó: ΔDAE=ΔDCB

=>AE=CB

Xét tứ giác ABCE có

AE//BC

AE=BC

DO đó; ABCE là hình bình hành

1 tháng 6 2019

A B C F D O I E 1 1 1

a) Xét tứ giác ABOC có: \(\widehat{ABO}=\widehat{ACO}=90^{\sigma}\left(gt\right)\Rightarrow\widehat{ABO}+\widehat{ACO}=180^{\sigma}\)

=> tứ giác ABOC nội tiếp

b) Ta có: OB = OC = R

                AB = AC(tính chất 2 tiếp tuyến cắt nhau)

=> OA là đường trung trực của BC

=> BC vuông góc OA

Xét tam giác OBA và tam giác BEA có

\(\widehat{OBA}=\widehat{BEA}=90^{\sigma}\)

\(\widehat{OAB}chung\)

\(\Rightarrow\Delta OBA\)đồng dạng \(\Delta BEA\left(g.g\right)\)

\(\Rightarrow\frac{OB}{BE}=\frac{BA}{EA}\Rightarrow BA.BE=AE.BO\)

c) Xét tứ giác OIBD có \(\widehat{OID}=\widehat{OBD}=90^{\sigma}\), cùng nhìn CD

=> tứ giác OIBD nội tiếp

=> \(\widehat{IDO}=\widehat{IBO}=\frac{1}{2}sđ\widebat{IO}\left(gnt\right)\)

Mà \(\Delta OBC\)cân ( OB = OC = R) \(\Rightarrow\widehat{IBO}=\widehat{BCO}\)

\(\Rightarrow\widehat{IDO}=\widehat{BCO}\)

Chứng minh tương tự tứ giác ABOC được tứ giác OIFC nội tiếp \(\Rightarrow\widehat{OFI}=\widehat{BCO}=\frac{1}{2}sđ\widebat{OI}\left(gnt\right)\)

\(\widehat{IDO}=\widehat{OFI}\Rightarrow\Delta DOF\)cân tại O

d) Tam giác DOF cân có OI là đường cao => OI đồng thời là đường trung tuyến => ID = IF

Xét tam giác IBD và tam giác IEF có:

IB = ID ( I là trung điểm BE)

góc BID = góc EIF ( đối đỉnh)

ID = IB (cmt)

=> tam giác IBD = tam giác EIF (c.g.c)

=> góc IDB = góc IFE

=> DB // EF hay EF//AB

XÉT tam giác CBA có E là trung điểm BC và EF//AB => EF là đường trung bình của tam giác CBA

=> F là trung điểm AC