K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADC có \(AC^2=AD^2+DC^2\)

nên ΔADC vuông tại D

b: Xét ΔABC có

AD là đường cao

AD là đường phân giác

Do đó: ΔABC cân tại A

c: Xét ΔBCE có 

BA là đường cao

BA=CE/2

Do đó: ΔBCE vuông tại C

24 tháng 1 2022

Chưa học đường cao 😬

a: Xét ΔADC có \(AC^2=AD^2+CD^2\)

nên ΔADC vuông tại D

b: Xét ΔABC có 

AD là đường cao

AD là đường phân giác

Do đó: ΔABC cân tại A

c: Xét ΔBCE có

CA là đường trung tuyến

CA=BE/2

Do đó: ΔBCE vuông tại C

24 tháng 1 2022

=)

a: Xét ΔADC có \(AC^2=AD^2+DC^2\)

nên ΔADC vuông tại D

b: Xét ΔABC có

AD là đường cao

AD là đường phân giác

Do đó: ΔABC cân tại A

c: Xét ΔBCE có 

BA là đường cao

BA=CE/2

Do đó: ΔBCE vuông tại C

24 tháng 1 2022

Chưa học đường cao =/

a: Xét ΔADC có \(AC^2=AD^2+DC^2\)

nên ΔADC vuông tại D

b: Xét ΔABC có

AD là đường cao

AD là đường phân giác

Do đó: ΔABC cân tại A

c: Xét ΔBCE có 

BA là đường cao

BA=CE/2

Do đó: ΔBCE vuông tại C

Ta có: EC⊥EB

mà EB⊥AD

nên EC//AD

11 tháng 9 2018

len mang tim de

25 tháng 1 2017

k minh minh giai cho

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1
13 tháng 12 2023

a: Xét ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

\(\widehat{BAD}=\widehat{CAD}\)

Do đó: ΔABD=ΔACD

=>AB=AC và DB=DC

Xét ΔABC có AB=AC

nên ΔABC cân tại A

b: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: DB=DC

=>D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AD là đường trung trực của BC

c: Xét ΔDBN vuông tại B và ΔDCM vuông tại C có

DB=DC

\(\widehat{BDN}=\widehat{CDM}\)(hai góc đối đỉnh)

Do đó: ΔDBN=ΔDCM

d: Ta có: ΔDBN=ΔDCM

=>DN=DM và BN=CM

Ta có: AB+BN=AN

AC+CM=AM

mà AB=AC và BN=CM

nên AN=AM

=>A nằm trên đường trung trực của NM(3)

ta có: DM=DN

=>D nằm trên đường trung trực của MN(4)

Từ (3) và (4) suy ra AD là đường trung trực của MN

Xét ΔAMN có \(\dfrac{AB}{BN}=\dfrac{AC}{CM}\)

nên BC//MN