Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+\widehat{B}+30^o=180^o\)
\(\Rightarrow\widehat{A}+\widehat{B}=150^o\)
a) Ta có: \(\widehat{A}+\widehat{B}=150^o\)
\(\Rightarrow x+y=150^o\)
Mà x = 2y
\(\Rightarrow2y+y=150^o\)
\(\Rightarrow3y=150^o\)
\(\Rightarrow y=50^o\)
\(\Rightarrow x=50^o.2=100^o\)
Vậy \(y=50^o,x=100^o\)
b) Ta có: \(\widehat{A}+\widehat{B}=150^o\)
\(\Rightarrow x+y=150^o\)
Mà \(x-y=10^o\)
\(\Rightarrow x=\left(150^o+10^o\right):2=80^o\)
\(\Rightarrow y=150^o-80^o=70^o\)
Vậy \(x=80^o,y=70^o\)
c) Ta có: \(3x=2y\Rightarrow\frac{x}{3}=\frac{y}{2}\) và \(\widehat{A}+\widehat{B}=150^o\) hay \(x+y=150^o\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{150^o}{5}=30^o\)
+) \(\frac{x}{3}=30^o\Rightarrow x=90^o\)
+) \(\frac{y}{2}=30^o\Rightarrow y=60^o\)
Vậy \(x=90^o,y=60^o\)
Giải:
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow x+y+t=180^o\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{t}{4}=\frac{x+y+t}{2+3+4}=\frac{180^o}{9}=20^o\)
+) \(\frac{x}{2}=20^o\Rightarrow x=40^o\)
+) \(\frac{y}{3}=20^o\Rightarrow y=60^o\)
+) \(\frac{t}{4}=20^o\Rightarrow t=80^o\)
b) \(x+y+t=180^o\)
\(\Rightarrow4t+4t+t=180^o\)
\(\Rightarrow9t=180^o\)
\(\Rightarrow t=20^o\)
\(\Rightarrow x=y=20^o.4=80^o\)
Vậy ...
a: Ta có: 2x=3y=5z
=>2x/30=3y/30=5z/30
=>x/15=y/10=z/6
Trường hợp 1: x-2y=5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-2y}{15-2\cdot10}=\dfrac{5}{-5}=-1\)
Do đó: x=-15; y=-10; z=-6
Trường hợp 2: x-2y=-5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-2y}{15-2\cdot10}=\dfrac{-5}{-5}=1\)
Do đó: x=15; y=10; z=6
b: Ta có: 5x=2y
nên x/2=y/5
=>x/6=y/15
Ta có: 2x=3z
nên x/3=z/2
=>x/6=z/4
=>x/6=y/15=z/4
Đặt x/6=y/15=z/4=90
=>x=6k; y=15k; z=4k
Ta có; xy=90
\(\Leftrightarrow90k^2=90\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
=>x=6; y=15; z=4
TRường hợp 2: k=-1
=>x=-6; y=-15; z=-4
Theo đề ta có:
x.y=24
x/3=y/2
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{x.y}{3.2}\)
\(=\frac{24}{6}=4\)
\(\Rightarrow x=3.4=12\)
\(\Rightarrow y=2.4=8\)
Đặt \(k=\frac{x}{3}=\frac{y}{2}\)
Suy ra : \(k^2=\frac{x.y}{3.2}=\frac{24}{6}=4\)
Nên : k = -2;2
+ k = -2 thì \(\frac{x}{3}=-2\Rightarrow x=-6\)
\(\frac{y}{2}=-2\Rightarrow x=-4\)
+ k = 2 thì \(\frac{x}{3}=2\Rightarrow x=6\)
\(\frac{y}{2}=2\Rightarrow x=4\)
Vậy ......................
Bài 2 :
Vì tam giác abc có số đo các góc a ,b,c lần lượt tỉ lệ là:3:4:5 .
Nên : \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Tổng 3 góc trong 1 tam giác bằng 180o
Nên : a + b + c = 180
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}==\frac{180}{12}=15\)
Nên : \(\frac{a}{3}=180\Rightarrow a=60\)
\(\frac{b}{4}=180\Rightarrow b=45\)
\(\frac{c}{5}=180\Rightarrow c=36\)
Vậy a = 60 ; b = 45 ; c = 36
Bài 1 : x/3 = y/4 = z/5 => x²/9 = y²/16 = z²/25
=> 2x²/18 = 2y²/32 = 3z²/75
=> x²/9 = (2x² + 2y² - 3z²)/(18 + 32 - 75) = - 100/(-25) = 1/4
=> x²/9 = 1/4 => x² = 9/4 => x = ±3/2
y²/16 = 1/4 => y² = 4 => y = ± 2
z²/25 = 1/4 => z² = 25/4 => z = ±5/2
Mà x, y, z cùng dấu.
Vậy (x ; y ; z) = (3/2 ; 2 ; 5/2) , (-3/2 ; -2 ; -5/2)
B3 ko tìm được x,y,z thỏa mãn do kết quả là 1 số không dương
a) Có \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{180^o}{9}=20\)
=> \(\left\{{}\begin{matrix}x=40^o\\y=60^o\\z=80^o\end{matrix}\right.\)
b) Có x = 2y = 3z
=> \(\dfrac{x}{6}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y+z}{6+3+2}=\dfrac{180^o}{11}\)
=> \(\left\{{}\begin{matrix}x=98^o10'\\y=49^o5'\\z=32^o43'\end{matrix}\right.\)
a)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{180}{9}=20\)
x=400
y=60 độ
z=80 độ
vậy ..........