Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt AB = c, BC = a,CA = b.
Theo tính chất đường phân giác ta có:
\(\frac{CD}{AD}=\frac{BC}{BA}\Rightarrow\frac{CD}{AD+CD}=\frac{CD}{AC}=\frac{BC}{BA+BC}\Rightarrow CD=\frac{AB.BC}{AB+BC}=\frac{ab}{c+a}\)
\(\Leftrightarrow\frac{CI}{CE}=\frac{a+c}{a+b+c}\)
Áp dụng định lý Py-ta-go đảo, ta có:
\(BD.CE=2BI.IC\Rightarrow\frac{BI}{BD}.\frac{IC}{CE}=\frac{1}{2}\Rightarrow\frac{\left(a+b\right)\left(b+c\right)^2}{a+b+c}=\frac{1}{2}\Leftrightarrow a^2+b^2+c^2\Rightarrow\Delta ABC\perp A\)
qwdddddddddddddddđqqqddddddddddddddddddddddddddddddddddddd09U*(9w bi uehvuhytgvguvh eogeohseydđ qddddddasdewd 7fh 89
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/hoi-dap/question/656668.html
Lời giải:
Chuyển $S_{ABC}=x$. Tính $BD.CE$ theo $x$
Đặt $AB=c; BC=a; CA=b$.
Theo tính chất tia phân giác:
$\frac{AD}{DC}=\frac{c}{a}\Rightarrow \frac{AD}{b}=\frac{c}{c+a}$
$\Rightarrow AD=\frac{bc}{c+a}$
Tương tự:
$AE=\frac{bc}{a+b}$
Áp dụng định lý Pitago:
$BD^2=c^2+(\frac{bc}{a+c})^2=c^2[1+\frac{b^2}{(a+c)^2}]$
$=c^2.\frac{(a+c)^2+b^2}{(a+c)^2}=c^2.\frac{a^2+b^2+c^2+2ac}{(a+c)^2}$
$=c^2.\frac{2a^2+2ac}{(a+c)^2}=\frac{2ac^2}{a+c}$
Tương tự:
$CE^2=\frac{2ab^2}{a+b}$
Do đó:
$BD^2.CE^2=\frac{4a^2b^2c^2}{(a+c)(a+b)}$
$BD.CE=\frac{2abc}{\sqrt{(a+b)(a+c)}}=\frac{4xa}{\sqrt{(a+b)(a+c)}}$
Như bạn thấy thì $BD.CE$ không tính được riêng theo $S_{ABC}$ mà vẫn bị ảnh hưởng bởi $AB,AC$