Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Xét △BEC và △AEM có:
\(BE=AE\) (E là trung điểm AB).
\(EC=EM\) (gt)
\(\widehat{BEC}=\widehat{ĂEM}\) (đối đỉnh).
=>△BEC = △AEM (c-g-c)
=>\(AM=BC\) (2 cạnh tương ứng).
\(\widehat{BCE}=\widehat{AME}\)(2 góc tương ứng).
=>BC//AM (1).
-Xét △CDB và △ADN có:
\(CD=AD\) (D là trung điểm AC).
\(BD=DM\) (gt)
\(\widehat{BDC}=\widehat{NDA}\) (đối đỉnh).
=>△CDB=△ADN (c-g-c)
=>\(AN=BC\) (2 cạnh tương ứng).
\(\widehat{BCD}=\widehat{NAD}\)(2 góc tương ứng).
=>BC//AN (2).
-Từ (1) và (2) suy ra: AN//AM
=>AN trùng với AM hay M,A,N thẳng hàng.
Mà BC=AM=AN.
=>A là trung điểm MN.
Xét tứ giác ABCM có
D là trung điểm của đường chéo AC
D là trung điểm của đường chéo BM
Do đó: ABCM là hình bình hành
Suy ra: AM//BC và AM=BC(1)
Xét tứ giác ANBC có
E là trung điểm của đường chéo AB
E là trung điểm của đường chéo CN
Do đó: ANBC là hình bình hành
Suy ra: AN//BC và AN=BC(2)
Từ (1) và (2) suy ra AM=AN(3)
Ta có: AM//BC
AN//BC
mà AM và AN có điểm chung là A
nên N,A,M thẳng hàng(4)
Từ (3) và (4) suy ra A là trung điểm của NM
1, tứ giác NACB là hình bình hành vì có 2 đường chéo cắt nkau tại trung điểm mỗi đường
---> NA song song với BC (1)
tứ giác ABCM là hình bình hành vì 2 đường chéo cắt nhau tại trung điểm mỗi đương
----> AM song song với BC (2)
từ 1 và 2 ---> N,A,M thẳng hàng
2, từ hình bình hành ---> NA=BC và AM=BC
----> NM = 2BC
Xét tam giác MEA và tam giác BEC có:
EM=FC(gt)
Góc MAE= góc EBC(vì 2 góc đoi đinh)
AE=BE(vì E là trung điem của AB)
Do đo tam giác MAE= tam giác EBC(c.g.g)(1)
=> MA =BC(2 cạnh tương ứng)
Xét tam giác ADN và tam giác BDC có:
DN=DB(gt)
góc ADN =góc BDC(2 góc đoi đinh)
AD=CD(vì D là trung điem của AC)
Do đo tam giác ADN= tam giác BDC(c.g.c)(2)
Từ 1 và 2 =>MA=NA
Vì tam giác MEA= tam giác BEC
=> góc B = góc A (2 góc so le trong)
=>AM // BC (3)
Vì tam giác ADN =tam giác BDC
=>góc C =góc A (2 góc so le trong)
=>AN // BC (4)
Từ 3 và 4 theo tiên đề ơ clit
=>A,M,N thẳng hàng
Ma MA=NA
Vay A là trung điem của MN
Giải thích các bước giải:
D là trung điểm của AC ⇒ AD = CD
a, Xét ΔADB và ΔCDM có:
AD = CD; DB = DM (gt); ˆADBADB^ = ˆCDMCDM^ (đối đỉnh)
⇒ ΔADB = ΔCDM (c.g.c) ⇒ AB = CM và ˆBACBAC^ = ˆMCAMCA^ (đpcm)
b, Xét ΔABC và ΔCMA có:
ˆA1A1^ = ˆC1C1^ (câu a); AB = CM; AC chung
⇒ ΔABC = ΔCMA (c.g.c) ⇒ ˆA2A2^ = $\widehat{C2} ⇒ AM ║ BC (đpcm)
c, I là trung điểm của AB, D là trung điểm của AC
⇒ ID là đường trung bình của ΔABC ⇒ ID ║ BC
K là trung điểm của CM, D là trung điểm của AC
⇒ KD là đường trung bình của ΔACM ⇒ KD ║ AM
mà AM ║ BC ⇒ ID ║ KD ⇒ K, D, I thẳng hàng (đpcm)
Tham khao!
https://lazi.vn/edu/exercise/545094/cho-tam-giac-abc-d-la-trung-diem-cua-ac-e-la-trung-diem-cua-ab-tren-tia-doi-cua-cua-tia-db-lay-diem-m-sao-cho-dmdb-tren-tia-doi-cu
Hình bạn tự vẽ nhé!
Xét tam giác MAE và tam giác EBC ... =>tam giác MAE = tam giác CBE (c-g-c)
=> AM=BC(...)(1)
và góc M= góc MCB (..)
=> AM//BC(3)
Xét tam giác ADN và tam giác DBC ...=> tam giác ADN = tam giác CDB (c-g-c)
=> AN=CB (...)(2)
và góc N = góc NBC (...)
=> AN//BC(4)
Từ (1) và (2) => AN=AM(5)
Từ(4) và (3) => A , M , N thẳng hàng ( tiên đề Ơ-clit )(6)
Từ (5) và (6) => A là trung điểm của MN