Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔADB và ΔBCA có
AD=BC
\(\widehat{DAB}=\widehat{CBA}\)
AB chung
Do đó: ΔADB=ΔBCA
Suy ra: DB=CA
Xét ΔACD và ΔBDC có
AC=BD
DC chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ADC}=\widehat{BCD}\)
Xét tứ giác ABCD có
\(\widehat{DAB}+\widehat{ABC}+\widehat{ADC}+\widehat{BCD}=360^0\)
\(\Leftrightarrow2\cdot\left(\widehat{DAB}+\widehat{ADC}\right)=360^0\)
\(\Leftrightarrow\widehat{DAB}+\widehat{ADC}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
Xét tứ giác ABCD có AB//CD
nên ABCD là hình thang
mà AC=BD
nên ABCD là hình thang cân
bài 1 mk đã giải cho bạn kiên trần cách giải bài đó cũng như bài này nên bạn xem chỗ bạn kiên trần nhé!
bài 2 theo mk là làm như thế này !
à mà bạn tự vẽ hình nhé!!!
Trong tứ giác ABCD , từ đỉnh A kẻ AH \(\perp\)DC , từ đỉnh B kẻ BG \(\perp\)DC.
Xét \(\Delta\)vuông ADH và \(\Delta\) vuông BCG có:
AD = BC ( đề cho)
góc D = góc C ( đề cho )
=> \(\Delta\)vuông ADH = \(\Delta\)vuông BCG ( cạnh huyền - góc nhọn )
=> AH = BG
mặt khác AH // BG ( cùng \(\perp\) BC )
=> Tứ giác ABGH là hình bình hành
=> AB // HG hay AB // DC
Tứ giác ABCD có góc D = góc C và AB // DC
=> ABCD là hình thang cân ( đpcm)
Xét ▲ADC và ▲BCD có:
AD = BC ( gt )
AC = BD ( gt )
DC chung
=> ▲ADC = ▲BCD ( c.c.c )
=> góc D = góc C ( c.t.ứ )
cmtt ta đc góc A = Góc B
Mà Góc D + góc A + Góc C + Góc B=360o
=> 2GócA+2GócD=360o
-> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang
Vì góc D = góc C (cmt) nên ABCD là hình thang cân
a. Ta có: AD = AB
=> \(\Delta ABD\) là tam giác cân
=> Góc ADB = góc ABD (1)
Mà góc ABD = góc BDC (so le trong) (2)
Từ (1) và (2), suy ra:
BD là tia phân giác của góc ADC
b. Nối AC
Xét 2 tam giác ABC và ABD có:
AD = BC (gt)
AB chung
=> \(\Delta ABD\sim\Delta ABC\) (1)
Ta có: AD = AB = BC (2)
Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)
=> Góc A = góc B
Ta có: AB//CD
=> Góc D + góc A = 90o (2 góc trong cùng phía)
Mà góc A = góc B
=> Góc C = góc D
=> ABCD là hình thang cân
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70*
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D (đpcm)
b/
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35*
=>ADC = 70*
Do ADC + BAD = 180* => AB song song CD
VÀ BCD = ADC =70*
=> tứ giác ABCD là htc (đpcm)
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70*
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D (đpcm)
b/
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35*
=>ADC = 70*
Do ADC + BAD = 180* => AB song song CD
VÀ BCD = ADC =70*
=> tứ giác ABCD là htc (đpcm)
nam cao copy tại https://vn.answers.yahoo.com/question/index?qid=20120905071415AAmqNM6
a, Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70*
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D (đpcm)
b/
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35*
=>ADC = 70*
Do ADC + BAD = 180* => AB song song CD
VÀ BCD = ADC =70*
=> tứ giác ABCD là htc (đpcm)
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 1800 - BAD = 700 nên BAN = BCD = 700
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (1800 - 1100) :2 = 350
=>ADC = 700
Do ADC + BAD = 1800 => AB song song CD
VÀ BCD = ADC =700
=> tứ giác ABCD là hình thang cân (đpcm)
chúc bạn học giỏi!! ^^
ok mk nhé!! 3564774734563476576855957234234342342323435345345456465465475676578658563463434
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Xét \(\Delta BAD\)và \(\Delta ABC\)có:
\(\widehat{A}=\widehat{B}\)
\(AD=BC\)
\(AB\)chung
\(\Rightarrow\Delta BAD=\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow AC=BD\)(2 cạnh t.ư)
=>tứ giác ABCD là HTC
Cách 1 : Kẻ thêm đường phụ AC
Và đường phụ BD
Xét tam giác ADC và tam giác ABC ta có :
AC chung
AD = BC (gt)
^A = ^B (gt)
=> tam giác ADC = tam giác ABC
=> AB = DC ( 2 cạnh tương ứng bằng nhau )
hay 2 góc kề cạnh đáy bằng nhau => ABCD là hình thang
Cách 2 : Ta có : AD = BC gt
=> 2 cạnh bên bằng nhau Vậy ABCD là hình thang :))