K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2020

ta có:+) AE=BE,AD=CD

=>ED là đường trung bình của tam giác ABC

=>ED=1/2BC=1/2.20=10cm

+) ME=MB,NC=ND

=>MN là đường trung bình của hình thang EDCB

=>MN//BC//ED

+) ME=MB,MI//ED

=>MI là đường trung bình của tam giác BED

=>MI=1/2ED=1/2.10=5cm

+) ND=NC,NK//ED

=>NK là đường trung bình của tam giác CDE

=>NK=1/2ED=1/2.10=5cm

Lại có:MN là đường trung bình của hình thang EDCB

=>MN=ED+BC/2=30/2=15cm

Mà MN=MI+IK+KN

=>IK=MN-(MI+KN)=15-10=5cm

Vậy MI=IK=KN=5cm

17 tháng 12 2023

Xét ΔABC có

E,D lần lượt là trung điểm của AB,AC

=>ED là đường trung bình của ΔABC

=>ED//BC và \(ED=\dfrac{1}{2}BC\)

Xét hình thang BEDC có

M,N lần lượt là trung điểm của EB,DC

=>MN là đường trung bình của hình thang BEDC

=>MN//ED//BC và \(MN=\dfrac{ED+BC}{2}=\dfrac{\left(\dfrac{1}{2}BC+BC\right)}{2}=\dfrac{3}{2}BC:2=\dfrac{3}{4}BC\)

Xét ΔBED có MI//ED

nên \(\dfrac{MI}{ED}=\dfrac{BM}{BE}\)

=>\(MI/ED=\dfrac{1}{2}\)

=>\(MI=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)

Xét ΔCED có KN//ED

nên \(\dfrac{KN}{ED}=\dfrac{CN}{CD}=\dfrac{1}{2}\)

=>\(KN=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)

Ta có: MI+IK+KN=MN

=>\(IK+\dfrac{1}{4}BC+\dfrac{1}{4}BC=\dfrac{3}{4}BC\)

=>\(IK=\dfrac{1}{4}BC\)

=>IK=MI=KN

8 tháng 9 2018

Tham khao này Bài 40 (Sách bài tập - trang 84)

Xét ΔABC có

E,D lần lượt là trung điểm của AB và AC

nne ED là đường trung bình

=>ED//BC và ED=1/2BC

Xét hình thang BEDC có

M,N lần lượt là trung điểm của EB và DC

nên MN là đường trung bình

=>MN//ED//BC và MN=(ED+BC)/2

Xét ΔBED có MI//ED
nên MI/ED=BM/BE=1/2

=>MI=1/2ED

Xét ΔCED có KN//ED

nên KN/ED=CN/CD=1/2

=>KN=1/2ED

IK=MN-MI-KN

=1/2(ED+BC)-1/2ED-1/2ED

=1/2BC-1/2ED=1/2ED

=>MI=IK=KN

21 tháng 8 2017

A B C E D M N I K

Xét tg ABC có: E là t/đ của AB (gt) và D là t/đ của AC (gt)

=> DE là đg trung bình của tg ABC => ED = 1/2. BC  ; ED//BC

Xét hthang EDCB(ED//BC) có: M là t/đ của BE (gt) và N là t/đ của DC(gt)

=> MN là đg trung bình của hthang EDCB => MN//DE//BC ;  MN = 1/2.(DE+BC) . MÀ DE=1/2.BC (cmt)=> MN=3/2 . DE

=> MI+IK+KN =3/2  . DE  (1)

xét tg BDE có: M là t/đ của BE(gt) ; MI//ED ( vì I thuộc MN ; MN//DE) => I là r/đ của BD => MI là đg trung bình của tg BDE

=> MI =1/2.DE   (2)

 C/m tương tự ta đc: KN là đg trung bình của tg CDE => KN= 1/2.DE  (3)

Từ (2) ,(3)=> MI=KN =1/2.DE  (*)

Thay (2),(3) vào (1) ta đc:  1/2. DE  +IK   +1/2.  DE  =3/2.  DE   =>  IK =1/2. DE   (**)

Từ (*),(**)=> MI=IK=KN    (đpcm)

16 tháng 8 2018

Bạn có thể giải thích cho mình vì sao = 1/2.(DE+BC)Mà DE = 1/2BC => MN =3/2  là sao vậy mình không hiểu đoạn đó

15 tháng 7 2017

Hỏi đáp Toán

Đảm bảo vẽ đúng hình nhé:
Bài1:a,nối E với D,ED là đường trung bình nên ED=4cm
MN là đường trung bình hình thang BEDC nên MN=(8+4):2=6
b,vì MI // ED và M là trung điểm BE => MI là đường trung bình ∆BED
MI=1/2 ED,tương tự ta có KN=MI=1/2 ED (*)
vì ED=1/2 BC mà ∆EDG∞∆IKG∞CBG(G là giao 2 tiếp tuyến)
nên IK=1/2 ED <=> kết hợp với(*)ta có KN=MI=IK=1/2ED

8 tháng 9 2017

G ở đâu vậy bạn ?

13 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong ∆ ABC ta có: E là trung điểm của cạnh AB

D là trung điểm của cạnh AC

Nên ED là đường trung bình của  ∆ ABC

⇒ ED // BC và ED = 1/2 BC

(tính chất đường trung bình của tam giác)

+) Tứ giác BCDE có ED // BC nên BCDE là hình thang.

Trong hình thang BCDE, ta có: BC // DE

M là trung điểm cạnh bên BE

N là trung điểm cạnh bên CD

Nên MN là đường trung hình hình thang BCDE ⇒ MN // DE

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

(tính chất đường trung bình hình thang)

Trong  ∆ BED, ta có: M là trung điểm BE

MI // DE

Suy ra: MI là đường trung bình của  ∆ BED

⇒ MI = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)

Trong  ∆ CED ta có: N là trung điểm CD

NK // DE

Suy ra: NK là đường trung bình của  ∆ CED

⇒ NK = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)

IK = MN – (MI + NK) = 3/4 BC – (1/4 BC + 1/4 BC) = 1/4 BC

⇒ MI = IK = KN = 1/4 BC

a:

Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC

Xét hình thang BEDC có 

M là trung điểm của EB

N là trung điểm của DC

Do đó: MN là đường trung bình của hình thang BEDC 

Suy ra: MN//ED//BC

Xét ΔEBD có

M là trung điểm của EB

MI//ED

Do đó: I là trung điểm của BD

Xét ΔEDC có 

N là trung điểm của DC

NK//ED

Do đó: K là trung điểm của EC

Xét ΔEBC có

M là trung điểm của EB

K là trung điểm của EC

Do đó: MK là đường trung bình của ΔEBC

Suy ra: \(MK=\dfrac{BC}{2}\left(1\right)\) và MK//BC

Xét ΔDBC có 

I là trung điểm của BD

N là trung điểm của DC
Do đó: IN là đường trung bình của ΔDBC

Suy ra: \(IN=\dfrac{BC}{2}\left(2\right)\)

Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: \(ED=\dfrac{BC}{2}\left(3\right)\)

Từ (1), (2) và (3) suy ra MK=IN=ED