Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Date cái hình ra đây đã, bài này "dễ" không ấy mà:))
A B C D E F H
Bài làm:
Ta có:
\(S_{AHB}=\frac{1}{2}\cdot AH\cdot BD\) , mà \(\sin\widehat{BHD}\cdot BH=\frac{BD}{BH}\cdot BH=BD\)
=> \(S_{AHB}=\frac{1}{2}\cdot AH\cdot BH\cdot\sin\widehat{BHD}\left(1\right)\)
\(S_{ABC}=\frac{1}{2}\cdot AC\cdot BE\) , mà \(\sin\widehat{ECB}\cdot BC=\frac{BE}{BC}\cdot BC=BE\)
=> \(S_{ABC}=\frac{1}{2}\cdot AC\cdot BC\cdot\sin\widehat{ECB}\left(2\right)\)
Dễ dàng CM được: Δ BDH ~ Δ BEC (g.g) => \(\widehat{BHD}=\widehat{ECB}\Rightarrow\sin\widehat{BHD}=\sin\widehat{ECB}\)
Chia vế (1) cho (2) ta được:
=> \(\frac{S_{AHB}}{S_{ABC}}=\frac{AH\cdot BH}{BC\cdot AC}=\frac{AH}{BC}\cdot\frac{BH}{AC}\)
Tương tự ta CM được: \(\frac{S_{CHA}}{S_{ABC}}=\frac{CH}{AB}\cdot\frac{AH}{BC}\) và \(\frac{S_{BHC}}{S_{ABC}}=\frac{BH}{AC}\cdot\frac{CH}{AB}\)
Cộng vế 3 BĐT trên lại ta được: \(\frac{S_{AHB}+S_{AHC}+S_{BHC}}{S_{ABC}}=\frac{AH}{BC}\cdot\frac{BH}{CA}+\frac{AH}{BC}\cdot\frac{CH}{AB}+\frac{BH}{AC}\cdot\frac{CH}{AB}\)
=> \(\frac{AH}{BC}\cdot\frac{BH}{CA}+\frac{AH}{BC}\cdot\frac{CH}{AB}+\frac{BH}{AC}\cdot\frac{CH}{AB}=\frac{S_{ABC}}{S_{ABC}}=1\)
Tiếp theo ta CM bất đẳng thức phụ: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\) (nhân 2 vào cả 2 vế)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(\forall a,b,c\right)\) luôn đúng
Dấu "=" xảy ra khi: \(a=b=c\)
Từ đó ta áp dụng vào CM bài toán:
\(\left(\frac{AH}{BC}+\frac{BH}{CA}+\frac{CH}{AB}\right)^2\ge3\left(\frac{AH}{BC}\cdot\frac{BH}{CA}+\frac{AH}{BC}\cdot\frac{CH}{AB}+\frac{BH}{CA}\cdot\frac{CH}{AB}\right)=3\cdot1=3\)
\(\Rightarrow\frac{AH}{BC}+\frac{BH}{CA}+\frac{CH}{AB}\ge\sqrt{3}\)
Dấu "=" xảy ra khi: \(\frac{AH}{BC}=\frac{BH}{CA}=\frac{CH}{AB}\Rightarrow AH=BH=CH\)
=> Tam giác ABC đều
Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
a) Xét 2 tam giác vuông DHC và FBC có: ^HCD chung => \(\Delta DHC~\Delta FBC\)
=> \(\frac{CD}{CF}=\frac{CH}{BC}\) => \(CH.CF=BC.CD\) (1)
tương tự với 2 tam giác vuông DBH và EBC có: ^EBC chung => \(\Delta DBH~\Delta EBC\)
=> \(\frac{BD}{BE}=\frac{BH}{BC}\) => \(BH.BE=BC.BD\) (2)
(1) và (2) => \(CH.CF+BH.BE=BC\left(BD+CD\right)=BC^2\)
b) CM tương tự câu a), ta cũng có: \(AH.AD+BH.BE=AB^2;AH.AD+CH.CF=AC^2\)
cộng lại ta có đpcm
Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại link trên nhé!