Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADK và ΔACK có
AD=AC
góc DAK=góc CAK
AK chung
=>ΔADK=ΔACK
=>DK=CK
b: ΔADC cân tại A
mà AM là phân giác
nên AM vuông góc DC
=>AM//HB
a: Xét ΔBAM và ΔBEM có
BA=BE
\(\widehat{ABM}=\widehat{EBM}\)
BM chung
Do đó: ΔBAM=ΔBEM
Suy ra: MA=ME
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
1,a, cm: tam giác BEC và tg BDC(c.g.c0
b, cm : tg ABE= tg ACD(c,g.c)
c, cm: BK=KC ( cm: tg BKD= tg CED)
CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM
a, Tính BC
b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC
c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC
a, gọi giao điểm AD và BE là F
theo bài ra có AD phân giác \(\) của \(\angle\left(BAC\right)\)
=>AF là phân giác của \(\angle\left(BAE\right)\)(1)
lại có AE=AB=>tam giác ABE cân tại A (2)
từ(1)(2)=>tam giác ABE cân tại A có AF là phân giác nên đồng thời cũng là đường cao\(=>AF\perp BE\)
hay \(AD\perp BE\)
b, theo BDT tam giác ABD \(=>BD< AB+AD\)
tương tự trong tam giác ACD \(=>CD< AD+AC\)
\(=>BD-CD< AB+AD-AD-AC=AB-AC< 0\)(do AB<AC)
\(=>BD-CD< 0=>BD< CD\)
Giups mình với ạ