Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác BAD và tam giác FAD có :
AD chung
góc A1= góc A2 (AD là phân giác )
=>tam giác BAD= tam giác FAD (cạnh huyền -góc nhọn)
b) tam giác BAD=tam giác FAD(cmt)
=>BD=FD
Trong tam giác FDC vuông tại F
góc D +góc C+gócF=180độ
Mà F=90 độ=D+C=90 độ
=>F>C
=>CD>FD
mà FD=BC(cmt)
=>CD>BC
c) TỰ NGHĨ NHA
a. Xét tam giác ABD vuông tại A và tam giác BED vuông tại E có:
BD : Cạnh chung
Góc ABD = góc DBE (BD phân giác)
=> Tam giác ABD = tam giác BED (cạnh huyền - góc nhọn)
b. Ta có BA = BE (Tam giác = tam giác câu a)
=> tam giác BAE cân tại B.
Lại có BD là phân giác tam giác BAE => BD vừa là phân giác vừa là đường trung trực của đoạn AE.
c. Xét tam giác EDC vuông tại E:
DE < DC (Cạnh góc vuông nhỏ hơn cạnh huyền)
Mà DE = DA (Tam giác = tam giác câu a)
=> DA < DC.
d. Xét tam giác ADF và tam giác EDC:
DA = DE (tam giác = tam giác câu a)
DAF = DEC (=90 độ)
AF = EC (gt)
=> Tam giác ADF = tam giác EDC (C.g.c)
=> ADF = EDC (góc tương ứng)
Mặt khác : EDC + EDA = 180 độ .
Từ đó suy ra : EDA + ADF = 180 độ.
Vậy E,D,F thẳng hàng.
Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)
Ta có
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
a) Xét tam giác \(ABD\)và tam giác \(EBD\)có:
\(AB=EB\)
\(\widehat{ABD}=\widehat{EBD}\)
\(BD\)cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
\(\Rightarrow\widehat{DEB}=\widehat{DAB}=90^o\)
do đó \(DE\perp BC\).
\(DE=DA\Rightarrow D\)thuộc đường trung trực của \(AE\).
\(BA=BE\)suy ra \(B\)thuộc đường trung trực của \(AE\).
Do đó \(BD\)là đường trung trực của \(AE\)nên \(AE\)vuông góc với \(BD\).
b) \(AD=DE< DC\)(cạnh góc vuông nhỏ hơn cạnh huyền)
c) Xét tam giác \(ADF\)và tam giác \(EDC\)có:
\(DA=DE\)
\(CE=FA\)
\(\widehat{DAF}=\widehat{DEC}\left(=90^o\right)\)
\(\Rightarrow\Delta ADF=\Delta EDC\left(c.g.c\right)\)
d) \(\Delta ADF=\Delta EDC\)suy ra \(\widehat{CDE}=\widehat{ADF}\)mà hai góc này ở vị trí đối đỉnh nên \(E,D,F\)thẳng hàng.
a: Xét ΔDAB và ΔDEB có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔDAB=ΔDEB
=>góc DEB=90 độ
=>DE vuông góc BC
b: AD=DE
mà DE<DC
nên AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC