Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
\(a,\)(Sửa đề: \(\Delta ABD=\Delta EBD\))
Vì \(\begin{cases} AB=BE\\ \widehat{ABD}=\widehat{EBD}\\ BD\text{ chung} \end{cases}\) nên \(\Delta ABD=\Delta EBD(c.g.c)\)
\(\Rightarrow \widehat{BAD}=\widehat{BED}=90^0\\ \Rightarrow DE\bot BC\)
\(b,\Delta ABD=\Delta EBD(cmt)\\ \Rightarrow AD=DE\Rightarrow D\in\text{trung trực }AE\\ AB=BE\Rightarrow B\in \text{trung trực }AE\\ \Rightarrow BD\text{ là trung trực }AE\)
\(c,\begin{cases} \widehat{MAD}=\widehat{CED}=90^0\\ AD=DE\\ AM=EC \end{cases}\\\Rightarrow \Delta ADM=\Delta EDC(c.g.c)\\ \Rightarrow MC=MD\)
\(d,\Delta ADM=\Delta EDC(cmt)\\ \Rightarrow \widehat{ADM}=\widehat{EDC}\)
Mà 2 góc này ở vị trí đối đỉnh và \(A,D,C\) thẳng hàng nên \(M,D,E\) thẳng hàng
Bài 1:
a: Xét ΔABE và ΔDBE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc CB
c: BA=BE
DA=DE
=>BD là trung trực của AE
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
cách 1
1 tam giác cân tại đỉnh nào thì các đường trung tuyến, phân giác, đường cao, đường trung trực đều là 1 (chứng minh không khó) => CM được luôn phân a
b/ Ta có AD là phân giác góc BAC (gt) => góc DAC = gócBAC/2 (1)
Tương tự góc CAF = gócCAE/2 (2)
Mà góc BAC + góc CAE = 180 độ (kề bù) (3)
Từ (1);(2) và (3) => góc DAC + góc CAF =180/2 = 90độ => AF vuông góc với AD. Mà BC cũng vuông góc với AD (Cm phần a) => AF // BC (quan hệ từ vuông góc đến song song).
c/ Do AF // BC (CM trên) => góc DCA = góc CAF (so le trong) => góc CAF = góc ABC => góc ABC = góc EAF
Xét tam giác BDA và tam giác AFE có AB = AE (gt); góc ABC = góc EAF và BD = AF (gt)
=> 2 tam giác này bằng nhau(c.g.c) => góc BDA = góc EFA = 90độ và EF = AD
d/ Chứng minh tương tự phần c ta được tam giác FAC = tam giác DCA(c.g.c) => góc AFC = góc ADC = 90độ.
Ta thấy nếu E;F;C thẳng hàng thì suy ra: + Góc EFC = 180độ (góc bẹt)
+ góc AEF = góc AEC
Ngoài ra còn tạo ra góc đối đỉnh,...
Nên ngược lại ta có thể dùng các điều suy ra để chứng minh các điểm thẳng hàng
Ta có : góc EFA + góc AFC = 90độ + 90độ = 180 độ => 3 điểm E;F và C thẳng hàng (đpcm)
cách 2
a, vì tam giác ABC cân tại A =>đường phân giác cũng là đường cao => AD vuông góc BC
b, Xét tam giác AEC cân ( AE = AC ), phân giác AF là đường cao => góc AFC = 90 độ
xét tứ giác AFCD có hai góc đối bằng 90 độ => tứ giác là hình chữ nhật
=> AF ss BC
c, Xét tam giác ADC = tam giác AFC ( cạnh huyền - góc nhọn ) => AD = FC mà FC = EF => EF = AD
d, Xét góc CFE = 180 độ => E, F, C thẳng hàng
bn chọn cách nào thì chọn nhưng nhớ k mk nha!
Mình nghĩ là mình làm sai nên bạn đừng chép theo nhé!!!a) Điểm E nằm trên tia đối của DE suy ra B nằm giữa E và D.
Vì vậy tia AB nằm giữa tia AE và AD suy ra \(\widehat{CAE}=\widehat{CAB}+\widehat{BAE}\).
Từ đó suy ra \(\widehat{CAE}>\widehat{CAB}\).
Tương tự \(\widehat{DCB}+\widehat{DCE}=\widehat{DCE}\). Từ đó suy ra \(\widehat{ACE}>\widehat{DCB}\).
Theo định lý tổng ba góc trong một tam giác:
\(\widehat{AEC}=180^o-\left(\widehat{CAE}+\widehat{ACE}\right)< 180^o-\left(\widehat{CAB}+\widehat{ACB}\right)=90^o\).
Suy ra \(\widehat{AEC}< 90^o\) hay góc AEC là góc nhọn.