Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M 3cm 4cm
Theo định lý pitago ta có:
AC2=AB2+BC2
AC2=32+42
AC2=9+16
AC2=25
AC=5
xét tam giác ABC vuông tại B ta có:
MA=MC
=> BM là đường trung tuyến của tam giác ABC
=> BM=1/2AC
BM=1/2*5=2.5 (cm)
B C A D O M N E F T U V
Kẻ MT // BD, T \(\in\)AD
Gọi giao điểm của MT và AC là U, giao điểm của NT và BD là V
Xét \(\Delta ABD\)có : MT // BD \(\Rightarrow\frac{AM}{AB}=\frac{AT}{AD}\)( Định lí Ta-lét )
Mà \(\frac{AM}{AB}=\frac{CN}{CD}\)( gt ) \(\Rightarrow\frac{AT}{AD}=\frac{CN}{CD}\)
Áp dụng định lí Ta-lét đảo trong \(\Delta ACD\)có \(\frac{CN}{CD}=\frac{AT}{AD}\)( cmt ) \(\Rightarrow\)NT // AC
Áp dụng định lí Ta-lét trong các tam giác :
+) \(\Delta AOB\)có MU // BO ( MT // BD; U\(\in\)MT; O \(\in\)BD ) \(\Rightarrow\frac{MU}{BO}=\frac{AM}{AB}\)(1)
+) \(\Delta OCD\)có VN // OC ( NT // AC; V \(\in\)NT; O \(\in\)AC ) \(\Rightarrow\frac{VN}{OC}=\frac{VD}{OD}\)(2)
+) \(\Delta OAD\): \(\orbr{\begin{cases}UT//OD\Rightarrow\frac{UT}{OD}=\frac{AT}{ÀD}\Rightarrow\frac{UT}{OD}=\frac{AM}{AB}\left(3\right)\\VT//OA\Rightarrow\frac{VT}{OA}=\frac{VD}{OD}\left(4\right)\end{cases}}\)
+) \(\Delta MNT\): \(\orbr{\begin{cases}EU//NT\left(AC//NT;E,U\in AC\right)\Rightarrow\frac{MU}{UT}=\frac{ME}{EN}\left(5\right)\\FV//MT\left(BD//MT;F,V\in BD\right)\Rightarrow\frac{VN}{VT}=\frac{FN}{FM}\left(6\right)\end{cases}}\)
Từ (1) (3) \(\Rightarrow\frac{MU}{OB}=\frac{UT}{OD}\Rightarrow\frac{MU}{UT}=\frac{OB}{OD}\)
Từ (2) (4) \(\Rightarrow\frac{VN}{OC}=\frac{VT}{OA}\Rightarrow\frac{VN}{VT}=\frac{OC}{OA}\)
Áp dụng hệ quả định lí Ta-lét trong \(\Delta OAD\)và \(\Delta OBC\)có BC // AD ( gt ) \(\Rightarrow\frac{OC}{OA}=\frac{OB}{OD}\)
\(\Rightarrow\frac{MU}{UT}=\frac{VN}{VT}\)kết hợp với điều (5) (6) \(\Rightarrow\frac{ME}{EN}=\frac{FN}{MF}\Rightarrow ME\cdot MF=FN\cdot EN\)
\(\Rightarrow ME\cdot\left(ME+EF\right)=FN\cdot\left(FN+EF\right)\Rightarrow ME^2+ME\cdot EF=FN^2+FN\cdot EF\)
\(\Rightarrow ME^2+ME\cdot EF-FN^2-FN\cdot EF=0\)\(\Rightarrow\left(ME-FN\right)\cdot\left(ME+FN\right)+EF\cdot\left(ME-FN\right)=0\)
\(\Rightarrow\left(ME-FN\right)\cdot\left(ME+FN+EF\right)=0\)
Vì các cạnh ME, FN, EF luôn lớn hơn 0 \(\Rightarrow\)không có trường hợp ME + FN + EF = 0
\(\Rightarrow ME-FN=0\Leftrightarrow ME=FN\)
Gt:
TG ABC có góc B=90độ
MA=MC; MF_I_AB; ME_I_BC; MN_I_AB; FN=NM; AB=3cm;AC=5cm
KL:(a) TG BEMF là hình chữ nhật
(b) TG BMAN là hình thoi
(c) Sbemf=?
Giải:
(a) Hứơng c/m " là tứ giác có 3 góc vuông"=> chỉ cần c/m 3 là đủ
(1)Góc B vuông theo (gt)
(2)góc MEB (có mũ trên ghét làm hình) là vậy vuông (gt)
(3)góc MFB vuông theo (gT)
=> dpcm
(b) Hướng chứng minh " tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường và vuông góc với nhau là hình thoi"
(1) Theo cách dựng hình MN & AB chính là hai đường chéo
(2) MN_I_AB theo (gt)
(3) MF=FN (gt) giải thích thêm N đối xứng của M qua F tất nhiên F phải là trung điểm
(4)FA=FB vì MF vuong góc với AB (gt) => MF// BC mà MA=MC (gt)=> theo tính chất Tam giác (ABC) MF chính là đường trung bình => FA=FB (*)
Vậy MN cắt AB tại trung điểm F đồng thời vuông góc với nhau => dpcm
(c) diện tích hình chữ nhật BEMF (hôm trước là tam giác mà)
(*)
BF=AB/2=3/2
BE=BC/2=4/2=2 {BC=4 theo hệ thức trong tam giác vuông 3^2+4^2=5^2)
=>S=3/2*2=3(cm^2)