Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔCAB và ΔCED có
\(\widehat{CAB}=\widehat{CED}\)(hai góc so le trong, DE//AB)
\(\widehat{ACB}=\widehat{ECD}\)(hai góc đối đỉnh)
Do đó: ΔCAB đồng dạng với ΔCED
=>\(\dfrac{CA}{CE}=\dfrac{AB}{ED}=\dfrac{CB}{CD}\)
=>\(\dfrac{12}{CE}=\dfrac{18}{ED}=\dfrac{9}{3}=3\)
=>\(CE=\dfrac{12}{3}=4\left(cm\right);ED=\dfrac{18}{3}=6\left(cm\right)\)
a; DN\(\perp\)AC
AB\(\perp\)AC
Do đó: DN//AB
=>DN//MB
Xét tứ giác BMND có
BM//DN
BD//MN
Do đó: BMND là hình bình hành
b: Xét ΔABC có
N là trung điểm của AC
NM//BC
Do đó: M là trung điểm của AB
Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>\(MN=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
a: DE⊥AC
AB⊥AC
Do đó: DE//AB
b: AC=8cm
=>CE=8-2=6(cm)
Xét ΔCAB có ED//AB
nên CD/CB=CE/CA
=>CD/10=6/8=3/4
=>CD=7,5(cm)
=>BD=2,5(cm)