K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2022

a: M đối xứng với D qua AB

nên MD vuông góc với AB tại E và Elà trung điểm của DM

D đối xứng với N qua AC

nên AC vuông góc với ND tại F và F là trung điểm của DN

Xét ΔBAC có

D là trung điểm của BC

DE//AC

Do đó; E là trung điểm của AB

Xét ΔCAB có

D là trung điểm của BC

DF//AB

Do đó: F là trung điểm của AC

Xét tứ giác AEDF có góc AED=góc AFD=góc FAE=90 độ

nên AEDF là hình chữ nhật

b: Xét tứ giác ADBM có

E là trung điểm chung của AB và MD

nên ADBM là hình bình hành

mà DA=DB

nên ADBM là hình thoi

=>AB là phân giác của góc DAM(1)

Xét tứ giác ADCN có

F là trung điểm chung của AC và DN

DA=DC

DO đó: ADCN làhình thoi

=>AC là phân giác của góc NAD(2)

c: Từ (1) và (2) suy ra góc MAN=2*90=180 độ

=>M,A,N thẳng hàng

mà AN=AM

nên A là trung điểm của MN

23 tháng 11 2018

a, ta có

+ M ddooid xứng với điểm D qua AB => md vuông góc vs ab(1)

+  N đối xứng với điểm D qua AC.=>dn vuông góc vs ac(2)

mà tam giác abc vuông tại a(3)

từ 1,2,3 => AEDF là hcn

30 tháng 12 2017

bn tự vẽ hình nha

a) ta có: góc ABC = 90 độ (gt)

góc ABD=90 độ ( Tính chất đối xứng)

góc AFD=90 độ (tính chất đối xứng)

=> AEDF là hình chữ nhật

b)*** Tứ giác ADBM là hình thoi vì:

ta có: AD là trung tuyến của tam giác ABC

=> AD= 1/2 BC

=> AD=BD=DC

Xét tam giác ADE(góc E=90 độ) và tam giác BED (góc E =90 độ) có

AD=BD (cmt)

ED là cạnh huyền chung

vậy tam giác ADE=\(\Delta BED\)(cạnh huyền-cạnh góc vuông)

=>AE=BE

Lại có ME=DE (tính chất đối xứng)

mà MD và AB cắt nhau tại E

=>ADBM là hình bình hành

lại có AD=BD (cmt)

=> ADBM là hình thoi

*** tứ giác ABCN là hình thang

Đầu tiên cm ADCN là hình thoi (cm tương tự)

=>AN//CD hay AN//BC (ADCN là hình thoi)

=>ABCN là hình thang

c)*ta cm M,A,N thẳng hàng

ta có AN //BC (cmt)

MA//BD hay MA//BC (ADBM là hình thoi)

=>M,A,N thẳng hàng ( chỉ có một đường thẳng song song với BC nên 3 điểm ms thẳng hàng)       (1)

* cm M đ/x với N qua A ( cm MA=AN)

ta có MA=BD ( ADBM LÀ HÌNH THOI)

lai có AN=DC (ACN là hình thoi)

màBD=CD (cmt)

=>MA=AN                                                                                        (2)

từ (1) và (2) => M đ/x với N qua A

28 tháng 11 2021
Công chúa thủy tế
16 tháng 11 2021

a: Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

16 tháng 11 2021

Amazing 

 

24 tháng 8 2017

dễ thôi

Cho đường tròn (O;R) đường kính AB,dây CD vuông góc với AB tại H,đường thẳng d tiếp xúc với đường tròn tại A,CO DO cắt đường thẳng d lần lượt tại M N,CM DN cắt đường tròn (O) lần lượt tại E F,Chứng minh tứ giác MNEF nội tiếp,Chứng minh ME.MC = NF.ND,Tìm vị trí của H để tứ giác AEOF là hình thoi,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

26 tháng 2 2018

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

26 tháng 2 2018

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

a. Điểm M và điểm D đối xứng qua trục AB

⇒ AB là đường trung trực của đoạn thẳng MD

⇒ AB ⊥ DM

⇒ AED^=900

Điểm D và điểm N đối xứng nhau qua trục AC ⇒ AC là đường trung trực của đoạn thẳng DN

⇒ AC ⊥ DN ⇒AFD^=900

EAF^=900 (gt)

Vậy tứ giác AEDF là hình chữ nhật (vì có ba góc vuông)

b. Tứ giác AEDF là hình chữ nhật ⇒ DE // AC; DF // AB

Trong ∆ ABC ta có: DB = DC (gt)

DE // AC

Suy ra: AE = EB (tính chất đường trung bình tam giác); DF// AB

Suy ra: AF = FC (tính chất đường trung bình của tam giác)

Xét tứ giác ADBM : AE = EB (chứng minh trên)

ED = EM (vì AB là trung trực DM)

Suy ra: Tứ giác ADBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

AB ⊥ DM

Vậy hình bình hành ADBM là hình thoi ( vì có hai đường chéo vuông góc)

Xét tứ giác ADCN:

AF = FC (chứng minh trên)

DF = FN (vì AC là đường trung trực DN)

Suy ra: Tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

AC ⊥ DN

Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo vuông góc)

c. Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD

hay AM // BC và AM = AD (1)

Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN

hay AN // BC và AN = AD (2)

Từ (1) và (2) suy ra: AM trung với AN hay M, A, N thẳng hàng

Và AM = AN  nên A là trung điểm của MN

Vậy điểm M và điểm N đối xứng với nhau qua điểm A

d. Hình chữ nhật AEDF trở thành hình vuông khi AE = AF

Ta có: AE = 12AB ; AF =12AC

nên AE = AF  AB = AC

Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuông.