Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: BH+CH=BC
nên BC=63+112=175
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=11025\\AC^2=19600\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=105cm\\AC=140cm\end{matrix}\right.\)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{105}=\dfrac{CD}{140}\)
mà BD+CD=BC=175
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{105}=\dfrac{CD}{140}=\dfrac{BD+CD}{105+140}=\dfrac{175}{245}=\dfrac{5}{7}\)
Do đó: \(BD=75\left(cm\right)\)
Ta có: DH+BH=BD
nên DH=BD-BH=75-63=12cm
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
10c - 11b / 9 =11a-9c/10=9b-10a/11 .chứng minh a/9=b/10=c/11
gọi độ dài HD=x,suy ra BD=63+x ;CD=112-x
theo hệ thứ lượng trong tam giác vuông:AB^2=BH*BC=63*(63+112)=11025 nên AB=105
AC^2=CH*BC=19600; nên AC=140
do AD là đường phân giác nên BD/CD=AB/AC hayBD*AC=CD*AB
do đó (63+x)*140=(112-x)*105 .giải ra ta được x=12. Vậy HD=12 cm
BC = BH + HC = 175 km
Áp dụng Hệ thức lượng trong tam giác vuông ABC có: AB2 = BH.BC = 63.175 => AB = 105 km
AC2 = CH. BC = 112. 175 => AC = 140 km
AD là p/g của góc A => BD / DC = AB/ AC = 105/140 = 3/4 => BD = 3/4 . DC
Mà BD + DC = BC = 175 => 3/4 . DC + DC = 175 => 7/4 . DC = 175 => DC = 175 : 7/4 = 100
Vì CD < CH => D nằm giữa C và H => DH = CH - CD = 112 - 100 = 12 km
A=1.2.3+2.3.4+3.4.5+...+98.99.1004A=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.44A=1.2.3.(4-0)+2.3.4.(5-1)+...+98.99.100.(101-97)4A=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.1004A=1.2.3.4-1.2.3.4+2.3.4.5-...-97.98.99.100+98.99.100.1014A=98.99.100.1014A=97990200A=979902004A=24497550
áp dụng hệ thức lượng
Ta có :
\(AB^2=HB.BC\); \(AC^2=CH.BC\)
\(\Rightarrow\frac{HB}{HC}=\frac{AB^2}{AC^2}=\frac{BD^2}{DC^2}=\frac{9}{16}\)
\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)
Mà DB = 75, DC = 100
vì H nằm giữa B và D nên DH = DB - HB = 75 - 63 = 12 ( cm )
Ta có \(\frac{AC^2}{AB^2}=\frac{BC.HC}{BC.HB}=\frac{112}{63}=\frac{16}{9}\Rightarrow\frac{AC}{AB}=\frac{4}{3}\)
Áp dụng tính chất đường phân giác ta có:
\(\frac{DC}{DB}=\frac{AC}{AB}=\frac{4}{3}\Rightarrow\frac{DC}{4}=\frac{DB}{3}=\frac{DC+DB}{7}=\frac{175}{7}=25\)
\(\Rightarrow DB=75\left(cm\right)\Rightarrow HD=75-63=12\left(cm\right)\)