K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2021

Giải hộ mình câu cuối phần d nha, 😊

15 tháng 4 2021

a)Xét tam giác ABC có:

góc ABC + góc BAC + góc ACB =180 độ. Thay số:

60 độ + 90 độ + góc ACB = 180 độ

góc ACB =180 độ - (60 độ + 90 độ)

góc ACB = 30 độ

b)Xét tam giác AMN và tam giác CMN có:

AM = CM (M là trung điểm của AC)

MN chung

góc AMN = góc CMN =90 độ(MN vuông góc với AC)

Suy ra :tam giác AMN = tam giác CMN(c.g.c)

CÒN LẠI MÌNH CHƯA NGHĨ RA. MONG BẠN THÔNG CẢMbucminh

a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔIMA vuông tại M và ΔIMC vuông tại M có

IM chung

MA=MC

Do đó; ΔIMA=ΔIMC

c: Xét ΔCAB có 

M là trung điểm của AC

MI//AB

Do đó: I là trung điểm của BC

Ta có: ΔABC vuông tại A

mà AI là đường trung tuyến

nên AI=BC/2

16 tháng 4 2022

cảm ơn bạn yêu nhé

11 tháng 3 2019

a) Ta có: góc A + góc B + góc C = 180 độ ( tổng 3 góc trong tam giác)

               90 độ + 60 độ + góc C = 180 độ

                                          góc C = 180 độ - (90 độ + 60 độ)

                                           góc C = 30 độ

Xét tam giác ABC có:

góc A > góc B > góc C

(90 độ > 60 độ > 30 độ)

-> BC>CA>AB

(quan hệ giữa cạnh và góc đối diện)                         

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

13 tháng 5 2017

b)  Xét tam giác abc và tam giác dbe có:

   \(\widehat{b}\): góc chung

   ab = bd (gt)

  \(\widehat{bac}\)\(\widehat{bde}\)( = 90 độ )

Vậy: tam giác abc = tam giac dbe