K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2022

a, Xét tam giác BAC và tam giác BEA ta có 

^B _ chung 

^BAC = ^BEA = 900

Vậy tam giác BAC ~ tam giác BEA (g.g) 

b, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=25cm\)

Ta có \(S_{ABC}=\dfrac{1}{2}.AB.AC;S_{ABC}=\dfrac{1}{2}.AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{300}{25}=12cm\)

 

24 tháng 5 2022

a ) .

Xét 2 t/g vuông : ABC và HBA có:

góc B chung

do đó: 

t/g ABC đồng dạng t/g HBA ( g - g )

b ) .

Áp dụng đl pytao vào t/g vuông ABC có :

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)

vi t/g ABC đồng dạng t/g HBA

=> \(\dfrac{AC}{HA}=\dfrac{BC}{AB}\Leftrightarrow\dfrac{20}{HA}=\dfrac{25}{15}\Rightarrow HA=20:\dfrac{25}{15}=12\left(cm\right)\)

 

24 tháng 5 2022

Hi chị

5 tháng 6 2020

a) Xét △BEA và △BAC có :

           \(\widehat{E}=\widehat{A}\left(=90^o\right)\)

           \(\widehat{B}\)là góc chung

\(\Rightarrow\)△BEA ~ △BAC (g.g)

b) +) Vì △BEA ~ △BAC

\(\Rightarrow\frac{AB}{BC}=\frac{BE}{AB}\)

\(\Rightarrow AB^2=BE.BC\)

\(\Rightarrow BE=1,8\left(cm\right)\)

+) Áp dụng định lý Pythagoras vào △ABC, ta được :

     \(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=5^2-3^2\)

\(\Rightarrow AC^2=16\)

\(\Rightarrow AC=4\left(cm\right)\)

+) Vì △BEA ~ △BAC

\(\Rightarrow\frac{AE}{AC}=\frac{BE}{AB}\)

\(\Rightarrow AE=\frac{AC.BE}{AB}=\frac{4\cdot1,8}{3}=2,4\left(cm\right)\)

c) Xét △BAI và △BEK có :

           \(\widehat{A}=\widehat{E}=\left(90^o\right)\)

           \(\widehat{ABI}=\widehat{IBC}\left(=\frac{1}{2}\widehat{ABC}\right)\)

\(\Rightarrow\)Vì △BAI ~ △BEK (g.g)

\(\Rightarrow\frac{EK}{AI}=\frac{BE}{BA}\)

\(\Rightarrow BE.AI=BA.EK\)(ĐPCM)

d) Vì BI là tia phân giác \(\widehat{B}\)của Vì △ABC

\(\Rightarrow\hept{\begin{cases}\frac{KA}{KE}=\frac{AB}{BE}\\\frac{IC}{IA}=\frac{BC}{AB}\end{cases}}\)

Vì Vì △BEA ~ △BAC

\(\Rightarrow\frac{AB}{BE}=\frac{BC}{AB}\)

\(\Rightarrow\frac{KA}{KE}=\frac{IC}{IA}\)(ĐPCM)

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE ....
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do ABAC,HEAB,HFACAB⊥AC,HE⊥AB,HF⊥AC

ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o

AEHF→◊AEHF là hình chữ nhật

AH=EF

Mấy câu khác chưa học !

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

11 tháng 5 2021

Bạn có bt vẽ hình và viết giả thiết ,kết luận ko 

Gửi cho mình với

21 tháng 4 2020

BANG 4987

21 tháng 4 2020

dinh gia khanh