Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo tính chất tia phân giác:
$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.BC$
$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$
Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)
Do đó:
$BH=35:(9+16).9=12,6$ (cm)
$CH=35:(9+16).16=22,4$ (cm)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)
\(\Leftrightarrow HB=\dfrac{9}{16}HC\)
Ta có: \(HB+HC=BC\)
\(\Leftrightarrow HC\cdot\dfrac{25}{16}=35\)
\(\Leftrightarrow HC=22.4\left(cm\right)\)
\(\Leftrightarrow HB=12.6\left(cm\right)\)
a) \(tanB=\frac{AC}{AB}=\frac{4}{3}\Rightarrow B\approx53^0\)
\(C=90^0-B\approx37^0\)
Áp dụng định lí PYTAGO cho tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15cm\)
Có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\Rightarrow AH=\frac{AB.AC}{BC}=7,2cm\)
b) Vì AD là phân giác tại A của tam giác ABC nên:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)
Mà \(BD+CD=BC=15\)
\(\Rightarrow\hept{\begin{cases}BD=\frac{45}{7}\approx6,4cm\\CD=\frac{60}{7}\approx8,6cm\end{cases}}\)
tam giác ABC có AD phân giác nênAB/AC=BD/CD=15/20=3/4
BC=15+20=35
AB/AC=3/4=>AB2/AC2=9/16=>AB2/\(\left(AC^2+AB^2\right)=\)9/25
=>\(\frac{AB^2}{BC^2}=\frac{9}{25}\Rightarrow AB=\sqrt{35^2.\frac{9}{25}}=21\)
tam giác vuông ABC có AH là đường cao
BH=\(\frac{AB^2}{BC}=12.6\)
tick nhaaaaaaaaaaaaaaaaaaa
cho tam giác ABC vuông tại A. AB=15, AC=20, đg phân giác BD.
a, Tính AD
b, Gọi H là hình chiếu của A trên BC. Tính AH, HB
c, Cm tam giác AID cân
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=12\left(cm\right)\)
b, Áp dụng HTL: \(HC=\dfrac{AC^2}{BC}=16\left(cm\right)\)
Vì AD là p/g nên \(\dfrac{HD}{DC}=\dfrac{AH}{AC}=\dfrac{3}{5}\Rightarrow HD=\dfrac{3}{5}DC\)
Mà \(DH+DC=HC=16\Rightarrow\dfrac{8}{5}DC=16\Rightarrow DC=10\left(cm\right)\)
\(\Rightarrow DH=6\left(cm\right)\\ \Rightarrow DB=BH+HD=25-16+6=15=AB\)
Do đó tg ABD cân tại B