K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,Xét ∆ABC và ∆KBA có :
B là góc chung
BAC = BKA
=> ∆ ABC ĐỒNG DẠNG với ∆KBA
=>BA TRên KB = BC TRÊN BA
=>AB²= BK.BC

https://h.vn/hoi-dap/question/585511.html

Bạn xem cả bài ở link này đi(mik gửi cho)

Học tôt!!!!!!!!!!!!

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA∼ΔHAC

c: Ta có: ΔHBA∼ΔHAC

nên HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

1,Cho tam giác ABC vuông tại A với AC = 3cm, BC = 5cm. Vẽ đường cao AK.Chứng minh rằng: a,∆ ABC ~ ∆ KBA và AB2 = BK.BCbTính độ dài AK, BK, CK.c) Phân giác góc BAC cắt BC tại D. Tính đọ dài BD.2,Cho hình thang ABCD (AB//CD). Gọi O là giao điểm của hai đường chéo AC và BD.a) Chứng minh OA.OD = OB.OC ;b) Cho AB = 5cm, CD = 10cm và AC = 9cm. Hãy tính OA, OC.3: Giải bài toán bằng cách lập phương trình.Một công nhân được...
Đọc tiếp

1,Cho tam giác ABC vuông tại A với AC = 3cm, BC = 5cm. Vẽ đường cao AK.
Chứng minh rằng: a,∆ ABC ~ ∆ KBA và AB2 = BK.BC
bTính độ dài AK, BK, CK.

c) Phân giác góc BAC cắt BC tại D. Tính đọ dài BD.

2,Cho hình thang ABCD (AB//CD). Gọi O là giao điểm của hai đường chéo AC và BD.
a) Chứng minh OA.OD = OB.OC ;

b) Cho AB = 5cm, CD = 10cm và AC = 9cm. Hãy tính OA, OC.

3: Giải bài toán bằng cách lập phương trình.
Một công nhân được giao làm một số sản phẩm trong một thời gian nhất định. Người đó dự định làm mỗi ngày 45 sản phẩm. Sau khi làm được hai ngày, người đó nghỉ 1 ngày, nên để hoàn thành công việc đúng kế hoạch, mỗi ngày người đó phải làm thêm 5 sản phẩm. Tính số sản phẩm người đó được giao.
Bài 5: Cho tam giác cân AOB (OA = OB). Đường thẳng qua B và song song với đường cao AH của tam giác AOB cắt tia OA ở E.
1) Chứng minh rằng OA2 = OH.OE ;

2) Cho , OA = 5cm. Hãy tính độ dài OE. 
Bài 6: Hình thang vuông ABCD () có hai đường chéo vuông góc với nhau tại I. 
1) Chứng minh ∆ AIB ~ ∆ DAB.

2) ∆ IAB ~ ∆ ICD.
3) Cho biết AB = 4cm, CD = 9cm. Tính độ dài AD, IA, IC và tỉ số diện tích của ∆ IAB và ∆ ICD.

Bài 7: Cho tam giác ABC có ba đường cao AD, BE, CF giao nhau tại H. Chứng minh rằng:
1) ∆ AEB ~ ∆ AFC. 2) ∆ ABC ~ ∆ AEF 3) HD/AD+HE/HE/BE+HF/CF=1

GIÚP ĐƯỢC CÂU NÀO THI GIÚP MÌNH NHÉ CAMON MỌI NGUOI NHIÊU LẮM

0
8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

15 tháng 5 2021

a/ \(BC=\sqrt{AB^2+AC^2}=10cm\)

BK là pg \(\widehat{ABC}\)

\(\Rightarrow\dfrac{AK}{CK}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)

=> \(\dfrac{AK}{3}=\dfrac{CK}{5}=\dfrac{AC}{8}=1\)

=> AK = 3cm ; CK = 5 cm

b/ Xét t/g ABC và t/g HBA có

\(\widehat{ABC}\) chung

\(\widehat{BAC}=\widehat{AHB}=90^o\)

=> t/g ABC ~ t/g HBA

=> \(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

=> \(AB^2=BC.HB\)

c/ \(\dfrac{BC}{AC}=\dfrac{10}{6}=\dfrac{5}{3}\)

 t/g ABC ~ t/g HBA vs tỉ số đồng dạng là 5/3

22 tháng 3 2023

Có hình vẽ ko ạ