K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet (O) có

ΔAHB nội tiếp

AB là đường kính

Do đo: ΔAHB vuông tại H

=>AH vuông góc với BC

AB^2=BC*BH

b: ΔOAD cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOD

Xét ΔOAC và ΔODC có

OA=OD

góc AOC=góc DOC

OC chung

Do đó: ΔOAC=ΔODC

=>góc ODC=90 độ

=>CD là tiếp tuyến của (O)

a: Xét (O) có

ΔAHB nội tiếp

AB là đường kính

Do đó: ΔAHB vuông tại H

hay AH⊥BC

b: Sửa đề: M là trung điểm của AC

Ta có: ΔAHC vuông tại H

mà HM là đường trung tuyến

nên HM=AM=AC/2

Xét ΔMAO và ΔMHO có

MA=MH

MO chung

OA=OH

Do đó: ΔMAO=ΔMHO

Suy ra: \(\widehat{MAO}=\widehat{MHO}=90^0\)

hay HM là tiếp tuyến của (O)

tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp

==> 4 điểm B,E,F,C cùng thuộc một đường tròn.

28 tháng 8 2021

\(1,\)Gọi I là tâm đường tròn đường kính BC thì I là trung điểm BC và \(MI=IN=BI=CI=\dfrac{1}{2}BC\) (bán kính cùng đường tròn)

\(\Rightarrow\Delta BNC\) vuông tại N và \(\Delta CMB\) vuông tại N

Vậy \(\widehat{BMC}=\widehat{BNC}=90\) độ

\(2,\)Ta có \(H=BM\cap CN\)

Mà BM, CN là đường cao tam giác ABC

Suy ra H là trực tâm

\(\Rightarrow AH\) là đường cao thứ 3

\(\Rightarrow AH\perp BC\)

\(3,\) Gọi giao điểm của tiếp tuyến tại N và AH là K, AH cắt BC tại E.

Ta có \(\widehat{KNH}+\widehat{INH}=90\)

Mà \(\widehat{INH}=\widehat{NCI}\left(NI=IC\right)\)

\(\Rightarrow\widehat{KNH}+\widehat{NCI}=90\)

Mà \(\widehat{NCI}+\widehat{CHE}=90\)

\(\Rightarrow\widehat{KNH}=\widehat{CHE}\)

Mà \(\widehat{CHE}=\widehat{NHK}\left(đđ\right)\)

\(\Rightarrow\widehat{KNH}=\widehat{NHK}\)

\(\Rightarrow\Delta NHK\) cân tại K\(\Rightarrow NK=KH\left(1\right)\)

Ta có \(\widehat{KNH}+\widehat{KNA}=90;\widehat{KHN}+\widehat{NAH}=90\)

\(\Rightarrow\widehat{ANK}=\widehat{NAK}\Rightarrow NK=AK\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow NK=KH=AK\)

\(\Rightarrow\)Đfcm

Tick plzzz, nghĩ nát óc đó

 

 

1: Xét (O) có 

\(\widehat{BNC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BNC}=90^0\)

Xét (O) có 

\(\widehat{BMC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BMC}=90^0\)

2: Xét ΔABC có 

BM là đường cao ứng với cạnh AC

CN là đường cao ứng với cạnh AB

BM cắt CN tại H

Do đó: H là trực tâm của ΔABC

Suy ra: AH\(\perp\)BC