Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo định lý Py-ta-go ta có:
AB2 + AC2 = BC2
62 +82 = BC2
Suy ra : BC2 = 82 + 62 =100
BC = 10 cm
b, Xét tam giác DAB và tam giác DEB ta có :
- B1=B2 (gt)
- BD là cạnh chung
- BE=BA (gt)
Suy ra tam giác DAB= DEB ( C.G.C)
Vậy : AD=AE (hai góc tương ứng )
Góc DAB= Góc DEB = 90 độ (hai góc tương ưng)
Hay DE vuông góc với BC
a/xét tg ABC vuông tại A :\(BC^2=AB^2+AC^2\\ BC^2=6^2+8^2\\ BC^2=36+64=100\\ BC=\sqrt{100}\\ BC=10\)
b/ xét tg ABD và tg BED :
BA = BE (gt)
BD cạnh chung
góc ABD = góc EBD (gt)
vậy tg ABD = tg EBD (c.g.c)
=> AD = ED (ctứ)
DE vg BE '' ko bít làm '' tớ hc ko giỏi ''
1:
=5x+2-6+x=6x-4
2:
Sửa đề; DE vuông góc với BC
Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
hay BD là đường trung trực của AE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BE
b: Ta có: ΔBAD=ΔBED
nên DA=DE
hay D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
nên B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
xem lại chỗ đâm nhé
Cho tam giác ABC ở phía ngoài tam giác vẽ các tam giác vuông tại A đó là tam giác ABD và tam giác ACE sao cho AB = AC và AC = AE . Kẻ AH vuông góc BC . Gọi I là giao điểm của HA và DE . Chứng minh DI = IE
hình tự vẽ
a)Vì AD là tpg của ^BAC
=>^BAD = ^CAD = ^BAC/2
Xét tam giác ABD và tam giác AED có:
AD:cạnh chung
^BAD=^CAD(cmt)
AB=AE(gt)
=>tam giác ABD=tam giác AED (c.g.c)
=>BD=BE (cặp cạnh t.ư)
b)Vì tam giác ABD=tam giác AED(cmt)
=>^ABD=^AED (cặp góc t.ư)
Ta có:^ABD+^KBD=1800 (kề bù)
=>^KBD=1800-^ABD (1)
^AED+^CED=1800 (kề bù)
=>^CED=1800-^AED(2)
Từ (1);(2);có ^ABD=^AED(cmt)
=>^KBD=^CED
Xét tam giác DBK và tam giác DEC có:
BD=BE(cmt
^KBD=^CED(cmt)
^BDK=^EDC (2 góc đđ)
=>tam giác DBK=tam giác DEC (g.c.g)
Từ tam giác DBK=tam giác DEC(cmt)
=>BK=EC (cặp cạnh t.ư)
Ta có: AB+BK=AK (B thuộc AK)
AE+EC=AC (E thuộc AC0
mà BK=EC(cmt);AB=AE(gt)
=>AK=AC
Xét tam giác AKC có:AK=AC(cmt)
=>tam giác AKC cân (ở A) (DHNB)
d)sai đề
Từ $I$ kẻ \(IM\perp DA, IN\perp AE\)
Ta có: \(\left\{\begin{matrix} \widehat{IAM}-90^0-\widehat{BAH}=\widehat{ABH}\\ \widehat{AMI}=\widehat{AHB}=90^0\end{matrix}\right.\Rightarrow \triangle IAM\sim \triangle ABH\)
\(\Rightarrow\frac{IM}{AH}=\frac{IA}{AB}\) $(1)$. Tương tự : \(\Rightarrow \triangle IAN\sim \triangle ACH\Rightarrow \frac{IN}{AH}=\frac{IA}{AC}(2)\)
Từ \((1)(2)\Rightarrow \frac{IM}{IN}=\frac{AC}{AB}=\frac{AE}{AD}\).
Do đó, \(\frac{S_{DIA}}{S_{EIA}}=\frac{IM.AD}{IN.AE}=1\Rightarrow S_{DIA}=S_{EIA}\Rightarrow ID=IE\) (đpcm)
a) Vì tam giác ABC vuông tại A(gt)
=)Â=90 độ
=)tam giác BAD là tam giác vuông tại A
Vì DE vuông góc vs BC (gt)
=)Ê =90 độ
=)tam giác BED là tam giác vuông tại E
xét tam giác BAD vuông tại A và tam giác BED vuông tại E có
Góc ABD =Góc EBD(vì BD là tia phân giác)
BD là cạnh chung
=) tam giác BAD=tam giác BED(ch-cgv)
Xét 2 tam giác vuông ABD và EBD có
Góc ABD=góc EBD(gt)
Cạnh huyền BD chung
=)) tam giác ABD=tam giácEBD (ch-gn)
a: Xét ΔADE có
AB/BD=AC/CE
nên DE//BC
b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có
DB=EC
\(\widehat{DBM}=\widehat{ECN}\)
Do đó: ΔDBM=ΔECN
Suy ra: BM=CN
c: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
DO đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
dễ mà