K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

Ta có D thuộc tia đối của tia HA nên H nằm giữa hai điểm A và D

Mà HA = HD nên H là trung điểm của AD

Mặt khác  B C ⊥ A D tại H (do  A H ⊥ B C )

Do đó BC là đường trung trực của đoạn thẳng AD

Suy ra  B A = B D C A ​ = C D (tính chất điểm nằm trên đường trung trực của đoạn thẳng)

Xét tam giác ABC và tam giác DBC có: 

BA = BD; CA = CD (cmt)

BC cạnh chung

Do đó:  Δ A B C = Δ D B C (c – c – c) 

Suy ra  B D C ^ = B A C ^ = 90 ° (hai góc tương ứng)

Vậy tam giác BDC vuông tại D.

Chọn đáp án C

11 tháng 11 2023

loading... a) Xét hai tam giác vuông: ∆ABH và ∆DBH có:

AH = DH (gt)

BH là cạnh chung

⇒ ∆ABH = ∆DBH (hai cạnh góc vuông)

b) Sửa đề: Chứng minh ∠BDC = 90⁰

Do ∆ABH = ∆DBH (cmt)

⇒ ∠ABH = ∠DBH (hai góc tương ứng)

AB = BD (hai cạnh tương ứng)

Do ∠ABH = ∠DBH (cmt)

⇒ ∠ABC = ∠DBC

Xét ∆ABC và ∆DBC có:

AB = BD (cmt)

∠ABC = ∠DBC (cmt)

BC là cạnh chung

⇒ ∆ABC = ∆DBC (c-g-c)

⇒ ∠BAC = ∠BDC = 90⁰

Vậy ∠BDC = 90⁰

11 tháng 11 2023

wow  bạn linh học giỏi dữ ta

17 tháng 3 2017

a) Chứng minh được tam giác ABC = tam giác A.BD (c-g-c), từ đó suy ra được tam giác BCD đều

b) Dùng kết quả câu a, ta có BC = CD = 2AC

17 tháng 12 2019

25 tháng 4 2018

a)Xet 2 tam giac vuong AHB va DHC co:

HC chung 

DH = AH

=>\(\Delta\)AHB = \(\Delta\)AHC (2 canh goc vuong)

Ta co : CA=CD (2 canh tuong ung)

=>\(\Delta\)CAD can

b)

29 tháng 5 2021

a,xét tam giác ACH và tam giác DCH có:

HA=HD(gt)

góc CHA= góc CHD(vì CH\(\perp\)AD)

HC chung => tam giác ACH=tam giác DCH(c.g.c)

tam giác ADC có CH vừa là trung tuyến đồng thời là đường cao=>tam giác ADC cân tại C

b,xét tam giác AHB và tam giác DHE có:

góc BHA= góc DHE( đối đỉnh)

HA=HD(cmt), HB=HE(gT)=>tam giác AHB= tam giác DHE(c.g.c)

gọi giao điểm DE với AC là K

vì tam giác AHB= tam giác DHE(cmt)=>góc HED= góc HBA

mà góc HED=góc CEK( đối đỉnh)=> góc HBA=góc CEK

lại có tam giác ABC vuông tại A=> góc HBA+ góc ECK=90 độ=> góc CEK+góc ECK=90 độ=>DK\(\perp AC\)

hay DE \(\perp AC\) mà CE\(\perp AD\)(tại H)=>E là trực tâm tam giác ADC

ăn cơm đã ý c tí mik làm sau

29 tháng 5 2021

help mình

a: \(BC=\sqrt{34}\left(cm\right)\)

b: Xét ΔBCD có 

CA là đường cao

CA là đường trung tuyến

Do đó:ΔCBD cân tại C

c: Xét ΔCKA vuông tại K và ΔCHA vuông tại H có

CA chung

\(\widehat{KCA}=\widehat{HCA}\)

Do đó: ΔCKA=ΔCHA

Suy ra: CK=CH

d: Xét ΔCBD có CK/CD=CH/CB

nên HK//BD

15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD

a: Xét ΔBCD vuông tại C và ΔBMD vuông tại M có

BD chung

\(\widehat{CBD}=\widehat{MBD}\)

Do đó: ΔBCD=ΔBMD

b: Ta có: ΔBCD=ΔBMD

=>BC=BM và DC=DM

Xét ΔBCM có BC=BM và \(\widehat{CBM}=60^0\)

nên ΔBCM đều

Ta có: BD là phân giác của góc CBA

=>\(\widehat{CBD}=\widehat{DBA}=\dfrac{\widehat{CBA}}{2}=\dfrac{60^0}{2}=30^0\)

Ta có: ΔBCA vuông tại C

=>\(\widehat{CBA}+\widehat{CAB}=90^0\)

=>\(\widehat{CAB}=90^0-60^0=30^0\)

Xét ΔDBA có \(\widehat{DAB}=\widehat{DBA}\left(=30^0\right)\)

nên ΔDAB cân tại D

c: Xét ΔDCK vuông tại C và ΔDMA vuông tại M có

DC=DM

CK=MA

Do đó: ΔDCK=ΔDMA

=>DK=DA

=>ΔDKA cân tại D

Ta có: BC+CK=BK

BM+MA=BA

mà BC=BM và CK=MA

nên BK=BA

=>ΔBKA cân tại B