K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCBD co

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

b: Xét ΔMDE và ΔMCB có

góc MDE=góc MCB

MD=MC

góc DME=góc CMB

=>ΔMDE=ΔMCB

=>DE=BC

=>BC+BD=ED+BD>EB

9 tháng 5 2017

a. Ta có: AB<AC

=> \(\widehat{C}< \widehat{B}\) (Quan hệ giữa góc đối diện với cạnh lớn hơn)

Xét tam giác ABC (\(\widehat{A}\)=90o) có:

\(\widehat{B}+\widehat{C}\) =90o

=> A=B+C=90o

=> A>B , C mà B>C

=> A>B>C

b. Xét tam giác ABC và tam giác ADC có:

AB=AD (gt)

BAC=DAC (=90o)

AC chung

=> tam giác ABC=tam giác ADC (c.g.c)

=> BC=DC

=> tam giác BDC cân tại C

a: XétΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{C}\)

b: Xét ΔBCD có

BA là đường cao

BA là đường trug tuyến

Do đó;ΔBCD cân tại B

11 tháng 4 2016

Diện tích toàn phần của khối nhựa hình lập phương là:

10 x 10 x 6 = 600 (cm2)

Cạnh khối gỗ hình lập phương là:

10 : 2 = 5 (cm)

Diện tích toàn phần của khối gỗ hình lập phương là:

5 x 5 x 6 = 150 (cm2)

Diện tích toàn phần của khối nhựa gấp diện tích toàn phần của khối gấp số lần là:

600 : 150 = 4 (lần)

11 tháng 4 2016

a) AB=4 cm;BD=8cm. góc A > góc C > góc B

b)tam giác ACB = tam giác ACD(c-g-c)

=>CB=CD hoặc góc B + góc D

=> tam giác CBD cân tại C

a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có

=> AB = 3 cm

Mà AB = AD ( gt)

=> AB = AD = 3cm

b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:

=> DC = 5 cm

=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :

AB = AD 

BC = CD (5cm)

=> Tam giác CAB = tam giác CAD(cgv-ch)

c) Vì BC//DE

=> BCM = MDE (so le trong)

Xét tam giác BMC và tam giác DME ta có :

DM = MC 

BCM = MDE(cmt)

DME = BMC 

=> Tam giác BMC = tam giác DME (g.c.g)

=> BC=DE(dpcm)

d)chịu

19 tháng 4 2020

Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AD=AB

a, Cho biết AC=4cm, BC=5cm. Tính độ dài AB và BD. Hãy so sánh các góc của tam giác ABC

b, Chứng minh tam giác CBD cân

c, Gọi M là trung điểm của CD, đường thẳng qua D và song song với BC cắt đường thẳng BM tại E. Chứng minh rằng BC = DE và BC+BD>BE

d, Gọi K là gia điểm của AE và DM. Chứng minh rằng BC=6KM

                                         Giải

a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có

=> AB = 3 cm

Mà AB = AD ( gt)

=> AB = AD = 3cm

b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:

=> DC = 5 cm

=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :

AB = AD 

BC = CD (5cm)

=> Tam giác CAB = tam giác CAD(cgv-ch)

c) Vì BC//DE

=> BCM = MDE (so le trong)

Xét tam giác BMC và tam giác DME ta có :

DM = MC 

BCM = MDE(cmt)

DME = BMC 

=> Tam giác BMC = tam giác DME (g.c.g)

=> BC=DE(dpcm)

a: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có

CA chung

AB=AD

=>ΔCAB=ΔCAD

b: Xét ΔMDK và ΔMCB có

góc DMK=góc CMB

MD=MC

góc MDK=góc MCB

=>ΔMDK=ΔMCB

=>DK=CB

BC+BD=BD+DK>BK