Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD và tam giác EBD:
+ AB = EB (gt).
+ BD chung.
+ \(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác).
\(\Rightarrow\) Tam giác ABD = Tam giác EBD (c - g - c).
b) Tam giác ABD = Tam giác EBD (cmt).
\(\Rightarrow\) \(\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).
Mà \(\widehat{BAD}=90^o\) (Tam giác ABC vuông tại A).
\(\Rightarrow\) \(\widehat{BED}=90^o\)
c) Xét tam giác ABE: BA = BE (gt).
\(\Rightarrow\) Tam giác ABE cân tại B.
Mà BD là phân giác (gt).
\(\Rightarrow\) BD là đường cao (Tính chất tam giác cân).
\(\Rightarrow\) \(BD\perp AE.\)
Answer:
Phần c) thì nhờ các cao nhân khác thoii.
a) Ta xét tam giác ABD và tam giác EBD:
AB = EB (gt)
BD cạnh chung
\(\widehat{B_1}=\widehat{B_2}\)
Vậy tam giác ABD = tam giác EBD (c.g.c)
\(\Rightarrow DE=DA\)
b) Theo phần a), tam giác ABD = tam giác EBD
\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
Vậy: \(\widehat{BED}=90^0\)
c) Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ΔBAD=ΔBED(cmt)
nên AD=ED(hai cạnh tương ứng)
hay D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
hay BD⊥AE(đpcm)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
ˆABD=ˆEBDABD^=EBD^(BD là tia phân giác của ˆABEABE^)
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên ˆBAD=ˆBEDBAD^=BED^(hai góc tương ứng)
mà ˆBAD=900BAD^=900(ΔABC vuông tại A)
nên ˆBED=900BED^=900
Vậy: ˆBED=900BED^=900
c) Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ΔBAD=ΔBED(cmt)
nên AD=ED(hai cạnh tương ứng)
hay D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
hay BD⊥AE(đpcm)
e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ ( 1 ) và ( 2 ) => B, D , M thằng hàng
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó:ΔABD=ΔEBD
b: Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADM}=\widehat{EDC}\)
Do đó:ΔADM=ΔEDC
Suy ra: \(\widehat{BME}=\widehat{BCA}\)
Xét ΔBEM vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBM}\) chung
Do đó:ΔBEM=ΔBAC
Suy ra: ME=CA
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
a) Thấy
Từ đây ta xét t/g MAC và BAN ta có:
=>MA=BA; AC=AN
=>
=>ΔMAC=ΔBAN(c−g−c)⇒MC=BNΔMAC=ΔBAN(c−g−c)⇒MC=BN
đpcm.
b)
Ta gọi giao điểm của MC và BN là 1 điểm D
Ta có: ˆDBA=ˆDMA(ΔMAC=ΔBAN(c−g−c))DBA^=DMA^(ΔMAC=ΔBAN(c−g−c))
Nên ˆMBD+ˆBMD=ˆMBA+ˆDBA+ˆBMD=ˆMBA+ˆDMA+ˆBMD=ˆMBAMBD^+BMD^=MBA^+DBA^+BMD^=MBA^+DMA^+BMD^=MBA^
+ˆBMA=90o+BMA^=90o
Xét t/g MBD có ˆMBD+ˆBMD=90o⇒ˆBMD=90oMBD^+BMD^=90o⇒BMD^=90o
⇒BN⊥MC⇒BN⊥MC
Bổ sung D giao điểm nhé vào hình nha bn.
c) Ta giả sử như ABC đều cạnh 4cm (theo đề bài) thì sẽ có: AM=AC=AB=NA=4cm
Áp dụng định lý pi-ta-go ta có:
Cho t/g MAB và NAC thì MB=NC=4√2(cm)42(cm)
Khi ABC đều cạnh 4cm thì AMC = NAB là t/g vuông cân có góc ở đỉnh : 90o+60o=150o
=>ˆAMC=ˆACMAMC^=ACM^= (180o-150o):2=15o
Thì
Lại có
Vì t/gMAN cân tại A nên = (180o-120o) : 2 =30o
=>
=>
=> BC//MN ( so le trong)
đpcm.