K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2016

a/ ta có M= <ACD ( cùng phụ với <ADC)

mà <M+ < MEA= 90

     <ACD+ <ADC= 90

suy ra : <MEA=<ADC

xét tam giác MEA và ACD :

<MEA=<ADC(cmt)

AE=AD

2 tam giác này bằng nhau thep trường hợp : cạn góc vuông - góc nhọn kề

12 tháng 2 2016

moi hok lop 6

14 tháng 7 2015

a. tam giác ABC cân tại A --> góc ABC= góc ACB

mà góc ABC = góc EBF (đối đỉnh)

---> góc ACB = góc EBF 

Xét tam giác EBF và tam giác DCK

     góc FEB= góc KDC= 90o

    EB=DC (gt)

    góc EBF =góc DCK

---->tam giác EBF = tam giác DCK(g.c.g)

b. có EF//DK ( do cùng vuông góc BC)

----> góc EFK = góc DKF ( so le trong)

Xét tam giác IEF và tam giác IDK

    góc IEF= góc IDK=90o

    EF=DK ( câu a)

    góc EFI = góc DKI

---> tam giác IEF = tam giác IDK( g.c.g)

----> IF=IK

4 tháng 2 2020

C B M F N A I E O K T

b, kẻ AO // BC

góc OAK so le trong KFB 

=> góc OAK = góc KFB (tc)

xét tam giác AOK và tam giác BMK có : AK = KM (do ...)

góc AKO = góc MBK (đối đỉnh)

=> tam giác AOK = tam giác BMK (g-c-g)= 

=> AO = MB (đn)

có AO // BC mà góc EOA đồng vị EMC 

=> góc EOA = góc EMC (tc)    (1)

gọi EF cắt tia phân giác của góc BCA tại T 

EF _|_ CT (gt)

=> tam giác ETC vuông tại T và tam giác CTF vuông tại T 

=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM 

có có TCM = góc ECT do CT là phân giác của góc ACB (gt)

=> góc CET = góc TMC   và (1)

=> góc  AEO = góc AOE 

=> tam giác AEO cân tại A (tc)

=> AE = AO mà AO = BM 

=> AE = BM

4 tháng 2 2020

a, MB = MN (gt)

M nằm giữa N và B

=> M là trung điểm của NP (đn)

NI // AB (gt); xét tam giác ANB 

=> I là trung điểm của AN (đl)

b, 

27 tháng 2 2019

ai làm nhanh nhất tui tk

13 tháng 7 2020

a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)

=> DM=NE

b) Ta có

\(\Delta MDI\perp D\)=> DMI+MID=90 độ

\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ

mà MID=NEI đối đỉnh

=> DMI=ENI

\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)

=> IM=ỊN

=> BC cắt MN tại I là trung Điểm của MN

c) Gọi H là chân đường zuông góc kẻ từ A xuống BC

=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )

=> góc HAB= góc HAC

Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I

=> tam giác OAB= tam giác OAC (c-g-c)(1)

=> góc OBA = góc OCA ; OC=OB

tam giác OBM= tam giác OCN (c-g-c)

=> góc OBM=góc OCN (2)

từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC

=> O luôn cố đinhkj

=> DPCM