K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(BC=\sqrt{12^2+9^2}=15\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\)

CH=5,4(cm)

2: \(BC=\sqrt{2+2}=2\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=1\left(cm\right)\)

\(BH=CH=AH=1\left(cm\right)\)

26 tháng 8 2021

26 tháng 8 2021

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)

hay AH=7,2(cm)

14 tháng 7 2021

tam giác ABC vuông tại A nên áp dụng định lý Py-ta-go

\(\Rightarrow AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=13^2-12^2=25\)

\(\Rightarrow AC=5\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow12^2=BH.13\Rightarrow BH=\dfrac{12^2}{13}=\dfrac{144}{13}\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow5^2=BH.13\Rightarrow BH=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\)

14 tháng 7 2021

Ta có: \(AC=\sqrt{BC^2-AC^2}=\sqrt{13^2-12^2}=5\left(cm\right)\)

Ta có: \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)

Ta có: \(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{13}=\dfrac{144}{13}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\)