Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Vì AM là trung tuyến tam giác cân tại A nên AM cũng là đường cao
Vì D là trung điểm AC và MN nên AMCN là hình bình hành
Mà \(AM\bot BC\Rightarrow AM\bot MC\)
Do đó: AMCN là hình chữ nhật
\(b,\) Vì AMCN là hcn nên \(AM=AC;AN=MC\)
Mà \(AB=AC;MB=MC\Rightarrow AM=AB;AN=MB\)
Vậy ABMN là hình bình hành
\(c,\) Ta có \(BM=MC=\dfrac{1}{2}BC=3(cm)\)
Áp dụng PTG vào tam giác ABM vuông M
\(AM=\sqrt{AB^2-BM^2}=4\left(cm\right)\)
Do đó \(S_{AMCN}=AM\cdot MC=4\cdot3=12\left(cm^2\right)\)
a) Xét tam giác ABC cân tại A: AM là trung tuyến (gt).
\(\Rightarrow\) AM là đường cao (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) AM \(\perp\) BC. \(\Rightarrow\) \(\widehat{AMC}\) = 90o.
Xét tứ giác AMCN có:
+ D là trung điểm của MN (N đối xứng với M qua D).
+ D là trung điểm của AC (gt).
\(\Rightarrow\) Tứ giác AMCN là hình bình hành (dhnb).
Lại có: \(\widehat{AMC}\) = 90o (cmt).
\(\Rightarrow\) Tứ giác AMCN là hình chữ nhật (dhnb).
b) Tứ giác AMCN là hình chữ nhật (cmt).
\(\Rightarrow\) AN // MC (Tính chất hình chữ nhật).
\(\Rightarrow\) AN // BM.
Vì AM là trung tuyến của tam giác ABC (gt). \(\Rightarrow\) M là trung điểm của BC.
\(\Rightarrow\) BM = MC = \(\dfrac{1}{2}\)BC.
Mà AN = MC (Tứ giác AMCN là hình chữ nhật).
\(\Rightarrow\) BM = MC = AN.
Xét tứ giác ABMN có:
+ BM = AN (cmt).
+ BM // AN (cmt).
\(\Rightarrow\) Tứ giác ABMN là hình bình hành (dhnb).
c) Ta có: BM = MC = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\).6 = 3 (cm).
Xét tam giác AMB vuông tại M có:
AB2 = AM2 + BM2 (Định lý Pytago).
Thay số: 52 = AM2 + 32.
\(\Leftrightarrow\) 25 = AM2 + 9. \(\Leftrightarrow\) AM2 = 16. \(\Leftrightarrow\) AM = 4 (cm).
Diện tích hình chữ nhật AMCN là: 3 . 4 = 12 (cm2).
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
A.
I là trung điểm của AB
I là trung điểm của MN (M đối xứng N qua I)
=> AMBN là hình bình hành
mà AM = MB (AM là đường trung tuyến của tam giác ABC vuông tại A)
=> AMBN là hình thoi
B.
Tam giác ABC vuông tại A có:
BC2 = AB2 + AC2 (định lý Pytago)
= 122 + 162
= 144 + 256
= 400 (cm)
BC = √400400 = 20 (cm)
mà AM = 1212BC = 20 : 2 = 10 (cm) (AM là đường trung tuyến của tam giác ABC vuông tại A)
AN = MB (AMBN là hình thoi)
mà MB = MC (M là trung điểm của BC)
=> AN = MC
mà AN // MC (AMBN là hình thoi)
=> ACMN là hình bình hành
=> MN = AC
mà AC = 16 (cm)
=> MN = 16 (cm)
a)Xét tứ giác AMCK ta có: IM=IK( vì M đối xứng với K qua I); IA=IC(vì I là trung điểm của AC).
Do đó: tứ giác AMCK là hình bình hành.
Mà ∠AMC=90 độ(vì AMlà đường trung tuyến của ΔABC cân tại A nên đồng thời là đường cao, hay AM⊥BC). Suy ra: AMCK là h.c.n(đpcm)
b) Vì AMCK là h.c.n.(chứng minh trên) nên AC=MK.
Mà AB=AC(tính chất tam giác cân). Do đó: AB=MK(=AC) (đpcm).
c) Để AMCK là hình vuông thì AM=AK⇒ΔAMK cân tại A. Khi đó đường trung tuyến AI sẽ đồng thời là đường cao, hay AI⊥MK.
Mặt khác, ta có: AB=MK(chứng minh trên); AK=BM(=MC). Do đó: AKMB là hình bình hành.
Suy ra:AB║MK. Mà MK⊥AI.nên AB⊥AI⇒AB⊥AC. Ta lại có: tam giác ABC cân tại A.
vậy nên: để AMCK là hình vuông thì tam giác ABC vuông cân tại A.
a) AM là trung tuyến (gt). => M là trung điểm của BC.
=> BM = MC = \(\dfrac{1}{2}\) BC.
Xét tứ giác AMBN:
I là trung điểm của AB (gt).
I là trung điểm của NM (N là điểm đối xứng với M qua I).
=> Tứ giác AMBN là hình bình hành (dhnb).
=> AN = BM và AN // BM (Tính chất hình bình hành).
Mà BM = MC (cmt).
=> AN = MC.
Xét tứ giác ANMC:
AN = MC (cmt).
AN // MC (AN // BM).
=> Tứ giác ANMC là hình bình hành (dhnb).
b) Xét tam giác ABC vuông tại A:
AM là trung tuyến (gt).
=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).
Mà BM = MC = \(\dfrac{1}{2}\) BC (cmt).
=> AM = BM = MC = \(\dfrac{1}{2}\) BC.
Xét hình bình hành AMBN: AM = BM (cmt).
=> Tứ giác AMBN là hình thoi (dhnb).
c) Tứ giác ANMC là hình bình hành (cmt).
=> NM = AC (Tính chất hình bình hành).
Mà AC = 6 cm (gt).
=> NM = AC = 6 cm.
\(S_{AMBN}=\dfrac{1}{2}.AB.NM=\dfrac{1}{2}.4.6=12\left(cm^2\right).\)
d) Tứ giác AMBN là hình vuông (gt).
=> \(\widehat{AMB}=90^o\) (Tính chất hình vuông).
=> \(AM\perp BC.\)
Xét tam giác ABC vuông tại A:
AM là trung tuyến (gt).
AM là đường cao \(\left(AM\perp BC\right).\)
=> Tam giác vuông ABC vuông cân tại A.
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
a: M đối xứng N qua AB
nên AM=AN; BM=BN
mà MA=MB
nên MA=MB=AN=BN
=>AMBN là hình thoi
b: Xét tứ giác ACMN có
AN//CM
AN=CM
Do đó: ACMN là hình bình hành
=>AM cắt CN tại trung điểm của mỗi dường
=>N,I,C thẳng hàng
c: BC=2*AM=10cm
=>AB=8cm
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)