Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VÌ \(\Delta ABC\)CÂN TẠI A \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
A) XÉT \(\Delta ABH\)VÀ\(\Delta ACH\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{B}=\widehat{C}\left(CMT\right)\)
\(\widehat{AHB}=\widehat{AHC}=90^o\)
=>\(\Delta ABH\)=\(\Delta ACH\)(ch-cgv)
b) vì\(\Delta ABH\)=\(\Delta ACH\)(cmt)
=> BH=CH ( HAI CẠNH TƯƠNG ỨNG)
=> AH LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)(ĐPCM)
C) TA CÓ \(\widehat{ABH}+\widehat{ABD}=180^o\left(kb\right)\)
\(\widehat{ACH}+\widehat{ACE}=180^o\left(kb\right)\)
MÀ \(\widehat{ABH}=\widehat{ACH}\left(CMT\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
XÉT \(\Delta ABD\)VÀ\(\Delta ACE\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{ABD}=\widehat{ACE}\left(CMT\right)\)
\(DB=CE\left(GT\right)\)
=>\(\Delta ABD\)=\(\Delta ACE\)(C-G-C)
=>AD=AE
=> \(\Delta ADE\)CÂN TẠI A
D)TỪ CHỨNG MINH TRÊN T DỄ DÀNG CM ĐƯỢC \(\Delta HDI=\Delta HEI\)
\(\Rightarrow\widehat{DHI}=\widehat{EHI}\)
MÀ HAI GÓC NÀY KỀ BÙ
\(\Rightarrow\widehat{DHI}=\widehat{EHI}=\frac{180^o}{2}=90^o\)
ta lại có \(\widehat{AHD}+\widehat{DHI}=\widehat{AHI}\)
THAY \(90^o+90^o=\widehat{AHI}\)
\(\Rightarrow\widehat{AHI}=180^o\)
=> \(\widehat{AHD}\)VÀ\(\widehat{DHI}\)KỀ BÙ
=> BA ĐIỂM A,H,I THẲNG HÀNG
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
=>ΔABM=ΔACN
=>AM=AN
b: góc MBD=góc ECN
=>góc KBC=góc KCB
=>K nằm trên trung trực của BC
=>A,H,K thẳng hàng
a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
BH chung
AH=DH(gt)
Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)
a)Xét ∆ vuông ABH và ∆ADH có :
AH chung
BH = HD
=> ∆ABH =∆ADH (2 cạnh góc vuông)
b) Xét ∆ABD ta có :
AH \(\perp\)BC
BH = HD
=> AH là trung trực
=> ∆ABD cân tại A
=> AB = AD
ABD = ADB
AH là phân giác BAD
=> BAH = DAH
Mà ADB = EDC ( đối đỉnh)
Xét ∆ ABH có :
ABH + BHA + BAH = 180°
=> BAH = 90° - ABH (1)
Xét ∆ DEC có :
DEC + ECD + CDE = 180°
=> EDC = 90° - EDC (2)
Mà EDC = BDA (cmt)
=> EDC = BDA = ABD (3)
Từ (1) (2) (3) => BAH = ECD (dpcm)
c) Xét ∆ABC có
BAC + ACB + ABC = 180°
=> ACB = 90° - ABC
Mà ECD = ABC (cmt)
=> ECD = BCA
Hay CB là phân giác ECA
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔACH
b: Xét tứ giác AHED có
B là trung điểm chung của AE và HD
=>AHED là hình bình hành
=>DE//AH
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét tứ giác AHED có
B là trung điểm chung của AE và HD
=>AHED là hình bình hành
=>DE//AH
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
BH chung
HA=HD
Do đó: ΔABH=ΔDBH
b: Xét ΔABC và ΔDBC có
BA=BD
góc ABC=góc DBC
BC chung
Do đó: ΔABC=ΔDBC
=>góc BDC=90 độ
c: ΔABC=ΔDBC
nên góc ACB=góc DCB
=>CB là phân giác của góc ACD