Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
HB chung
HA=HD
Do đó: ΔAHB=ΔDHB
b: Xét ΔACH vuông tại H và ΔDCH vuông tại H có
HC chung
HA=HD
Do đó: ΔACH=ΔDCH
Suy ra: \(\widehat{ACH}=\widehat{DCH}\)
hay CB là tia phân giác của góc ACD
a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
BH chung
AH=DH(gt)
Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)
a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:
^AHB = ^DHB ( 1v )
HA = HD ( giả thiết )
MH chung
=> \(\Delta\)AHB = \(\Delta\)DHB ( c.g.c)
b) Từ (a) => ^ABH = ^DHB => BH là phân giác ^ABD
Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC
=> BC là phân giác ^ABD
c) NF vuông BC
AH vuông BC
=> NF // AH
=> ^NFM = ^HAM ( So le trong )
Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )
=> \(\Delta\)NFM = \(\Delta\)HAM ( g.c.g)
=> NF = AH ( 2)
Từ ( a) => AH = HD ( 3)
Từ (2) ; (3) => NF = HD
a: \(\widehat{C}=90^0-60^0=30^0\)
Xét ΔABC có \(\widehat{C}< \widehat{B}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
HC chung
HA=HD
Do đó: ΔAHC=ΔDHC
c: Xét ΔBAC và ΔBDC có
CA=CD
\(\widehat{ACB}=\widehat{DCB}\)
CB chung
Do đó: ΔBAC=ΔBDC
Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)
a: \(\widehat{C}=90^0-60^0=30^0\)
Xét ΔABC có \(\widehat{C}< \widehat{B}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
HC chung
HA=HD
Do đó: ΔAHC=ΔDHC
c: Xét ΔBAC và ΔBDC có
CA=CD
\(\widehat{ACB}=\widehat{DCB}\)
CB chung
Do đó: ΔBAC=ΔBDC
Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)
a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC)
=> AH là đường trung tuyến (TC tam giác cân)
=> H à TĐ của BC
=> BH = HC
Xét tam giác AHB và tam giác AHC:
BH = HC (cmt)
^AHB = ^AHC (90o)
AH chung
=> tam giác AHB = tam giác AHC (ch - cgv)
b) Ta có: HA = HD (gt) => H là TĐ của AD
Xét tam giác ACD có:
CH là đường cao (CH vuông góc AD)
CH là trung tuyến (H là TĐ của AD)
=> tam giác ACD cân tại C
c) Xét tam giác ACD cân tại A có:
AD > AC + CD (Bất đẳng thức trong tam giác)
=> \(\dfrac{1}{2}AD=\dfrac{1}{2}\left(AC+CD\right)\)
Mà \(HA=\dfrac{1}{2}AD\) (H là TĐ của AD)
=> \(HA>\dfrac{1}{2}\left(AC+CD\right)\) (ĐPCM)
Bạn có thể giúp mik thêm 1 cái nx là vẽ hình đc ko bạn?
a: góc B=90-30=60 độ
góc B>góc C
=>AC>AB
góc CAH=90-30=60 độ>góc C
=>CH>AH
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD
=>ΔCAH=ΔCDH
c: Xét ΔACB và ΔDCB có
CA=CD
góc ACB=góc DCB
CB chung
=>ΔACB=ΔDCB
=>góc CDB=góc CAB=90 độ